Ph.D. State University of Campinas (2004)
My primary research interests are correlated quantum critical systems. This is the case of superconductors with nodal gaps, such as cuprates, and also of a broad class of materials with Dirac-like electronic excitations, known as Dirac materials.
The most popular examples of nodal systems in Condensed Matter today are Dirac semimetals, topological insulators and superconductors and Chern insulators. Those systems have the unifying property that their Fermi surface can be continuously deformed into a set of points or lines. In all those systems, the elementary excitations behave as chiral fermions and mimic properties known in quantum electrodynamics. The presence of Fermi surface nodes can also allow the existence of different topological states defined by quantum numbers associated with paths encircling these nodes. In general, those quantum numbers offer a rich playground for the emergence of new quantum phenomena.
My current interests span areas of strongly correlated phases in quantum materials, unconventional superconductivity, localization, disorder, Chern insulators, and low dimensional systems.