Bedle, H., Lou, X., and S. van der Lee. High-resolution imaging of continental tectonics in the mantle beneath the United States, through the combination of USArray data sets, Geochemisty, Geophysics, Geosystems, 2021, doi.org/10.1029/2021GC009674
Bedle, H., Cooper, C., and C. Frost, Nature versus Nurture: Preservation and Destruction of Archean Cratons, Tectonics, e2021TC006714, 2021 doi: 10.1029/2021TC006714
Salazar Florez, D., and H. Bedle, Study on the parameterization response of probabilistic neural Networks for Seismic Facies Classification in the Gulf of Mexico, Interpretations,Vol. 10, Iss 1 (2022) DOI: 10.1190/INT-2020-0218.1
Lubo-Robles, D., D. Devegowda, V. Jayaram, H. Bedle, K., Marfurt, M. Pranter, Quantifying the sensitivity of seismic facies classification to seismic attribute selection: An explainable machine learning study, Interpretations, 2022
La Marca, K., and H. Bedle. Deepwater seismic facies and architectural element interpretation aided with unsupervised machine learning techniques: Taranaki basin, New Zealand. Marine and Petroleum Geology, 2022. doi.org/10.1016/j.marpetgeo.2021.105427
Buist, C., Bedle, H, Rine, M., and J. Pigott. Enhancing Paleoreef Reservoir Characterization through Machine Learning and Multi-Attribute Seismic Analysis: Silurian Reef Examples from the Michigan Basin, Geosciences 11(3), 142, 2021 doi: 10.3390/geosciences11030142
Chenin, J., Bedle, H. Multi-attribute machine learning analysis for weak BSR detection in the Pegasus Basin, Offshore New Zealand. Mar Geophys Res 41, 21 (2020). doi:10.1007/s11001-020-09421-x