Skip Navigation

OU Researchers to Use Deep Learning to Understand Tornadoes

NEWS
A tornado.
Photographer: Robby Frost (NOAA/NSSL).

OU Researchers to Use Deep Learning to Understand Tornadoes


By

Kat Gebauer
kathryngebauer@ou.edu

Date

Sept. 25, 2024

NORMAN, OKLA. – For years, scientists have worked diligently to understand tornadoes to better forecast them. The National Science Foundation has funded a team of OU scientists to take a cutting-edge approach to understanding the life cycle of tornadoes. Over three years, the team, led by Nathan Snook, Ph.D., will use deep learning techniques to better understand how tornadoes form.

The team will create a library of approximately 200 numerical simulations to train a machine-learning model. The simulations use computer models to create a set of grid points containing three-dimensional information on the atmosphere, allowing meteorologists to predict how storms within this simulated cube of atmosphere will evolve over time, all to answer why and how tornadoes form.

According to Snook, a significant benefit of using a machine learning approach in tandem with these simulations will be training the algorithm to predict where a tornado will develop based on not one or two fields but all the information a model offers.

“Many different features have been implicated in the literature as being important to tornadoes,” said Snook, citing variables such as temperature, moisture and wind direction and speed, among many others. “A machine learning model can take all of that information and look at it impartially, and hopefully confirm or refute existing understanding of how tornadoes form and decay.”

Snook plans to take two separate approaches to the machine-learning process. In one approach, researchers will give the machine-learning model information about what scientists believe are the most important features in tornado development. In the second approach, the team will allow the model to learn on its own what features it believes are important, and then human scientists will interpret what the model has learned.

Snook says it is possible that the model will latch on to a new, previously unidentified interaction between variables and features that could help scientists to better understand the ways tornadoes form.

“The machine learning model learns things in a way that is very different from the way a human would, and it may learn things that human scientists would have a blind spot for,” said Snook.

Snook is the director of research and a senior research scientist with the Center for Analysis and Prediction of Storms, or CAPS, at the University of Oklahoma. In addition to Snook, the research team consists of Ming Xue, Ph.D., Amy McGovern, Ph.D. and Andrew Fagg, Ph.D. of OU, and Corey Potvin, Ph.D., a research scientist with the National Oceanic and Atmospheric Administration’s National Several Storms Laboratory.

About the project

“Investigating Tornadogenesis via Explainable Deep Learning” is funded by the National Science Foundation for $866,172 over three years, starting September 1, 2024.

About the University of Oklahoma

Founded in 1890, the University of Oklahoma is a public research university located in Norman, Oklahoma. As the state’s flagship university, OU serves the educational, cultural, economic and health care needs of the state, region and nation. For more information about the university, visit www.ou.edu.


Recent News

Campus & Community
December 04, 2025

OU Dean Mary Margaret Holt Receives Paseo Lifetime Achievement Award

Mary Margaret Holt, dean of the University of Oklahoma Weitzenhoffer Family College of Fine Arts, has been honored with the Paseo Arts Association’s Lifetime Achievement Award, recognizing her leadership and contributions to Oklahoma’s arts community.


Campus & Community
December 03, 2025

Falling Temperatures Increase Risk of Carbon Monoxide Poisoning

With winter weather already bringing low temperatures to the state, the Oklahoma Poison Center is urging residents to take extra precautions to avoid carbon monoxide (CO) poisoning as they begin heating their homes for the winter season. Carbon monoxide is a colorless, odorless gas that can be deadly when inhaled in large quantities, and it poses a heightened risk as people rely on heating devices for warmth during cold weather.


Campus & Community
December 01, 2025

OU Law Announces Expanded Chickasaw Nation – Henry Family Lecture Series

Thanks to support from the Chickasaw Nation, the University of Oklahoma College of Law has announced the continuation and expansion of the Chickasaw Nation – Henry Family Lecture Series. Under the new name, the event will continue to showcase thought-provoking discourse surrounding the rule of law.