
Rayleigh & Mie scattering cross section calculations and
implications for weather radar observations

1 Learning Objectives

The following are the learning objectives for this assignment:

• Familiarize yourself with some basic concepts related to radio wave scattering, absorption,
and radar cross sections

• Become acquainted with some of the fundamental definitions and foundations connected
with the Mie theory

• Explore under what conditions the Rayleigh approximation can be applied and to what
extent it accurately represents radio wave scatter and absorption

• Study the dependence of various radar cross sections on wavelength and temperature

2 Introduction

As electromagnetic radiation propagates though our atmosphere, it interacts with air molecules,
dust particles, water vapor, rain, ice particles, insects, and a host of other entities. These interac-
tions result primarily in the form of scatter and absorption, both of which are important for remote
sensing studies of the atmosphere. Typically, the degree to which a “target” can scatter or absorb
electromagnetic radiation is described through its cross section σ. When a target is illuminated
by a wave having a power density (irradiance) given by Si, it will scatter/absorb a portion of the
wave. The cross section represents an apparent area, used to describe by what amount the
radiation interacts with the target. An observer located at a particular location (described by θ
and φ with respect to the wave’s propagation vector) will be detect radiation scattered by the
target with a power density given by by Sr. Assuming that the target has scattered the incident
electromagnetic radiation isotropically, then the cross section σ can be directly calculated using

σ(θ, φ) = 4πr2 Sr(θ, φ)

Si

, (1)

where r is the distance between the target and the observer. In general, the scattering cross
section will depend the angles θ and φ. That is, the scatter is not truly isotropic. Also note that
the value of σ does not in general correspond to the geometric cross section of the target.

Here we will consider four different types of cross sections, which are commonly used in con-
nection with radar. They are the scattering cross section σs, the extinction cross section σe, the
absorption cross section σa, and the backscattering cross section σb. The scattering cross sec-
tion multiplied by the power density of the incident wave is equivalent to total amount of energy
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removed from the electromagnetic wave due to scatter in all directions. A certain amount of the
energy is absorbed, which results in a heating of the target. The amount of energy removed from
the electromagnetic wave through this process is equal to the scattering cross section multiplied
by the power density of the incident wave. The cumulative effective of scattering and absorption
is described by the absorption cross section. Finally, if one considers the value of σ(θ, φ) for
scattered in the direction from which the wave originates (backscattered), then this value de-
fines the backscattering cross section. See such books as ??? for additional explanation and
clarification.

In 1908, the German physicist Gustav Mie formulated a complete scattering/absortion theory,
which describes the interaction of electromagnetic waves with spherical dielectric particles [?].
He showed that a solution could be found given in terms of an an infinite series of electric and
magnetic multipoles. According to Mie theory, the scattering, extinction, backscattering, and ab-
sorption cross sections can be expressed as

σs =
2πa2

α2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2) (2)

σe =
2πa2

α2

∞∑
n=1

(2n+ 1)[−Re(an + bn)] (3)

σb =
πa2

α2

∣∣∣∣∣
∞∑

n=1

(2n+ 1)(−1)n(an − bn)

∣∣∣∣∣
2

, (4)

and
σa = σe − σs, (5)

respectively, where a is the drop radius and α = 2πa/λ. The variable α is sometimes called the
radio electric size or the normalized radius and allows us to explore scattering and absorption
in terms of scaled quantities, which in turn are applicable for any radio-wave frequency. The
coefficients an and bn represent the magnetic and electric multipoles of order n, respectively.
Note that the extinction cross section is the sum of the scattering and absorption cross sections.
If only values for an and bn containing α terms to fifth order or smaller are considered, then the
following expressions remain

a1 = − i

45
(m2 − 1)α5 (6)

b1 = −2 i

3

(
m2 − 1

m2 + 2

)
α3

[
1 +

3

5

(
m2 − 2

m2 + 2

)
α2

]
(7)

b2 =
i

15

(
m2 − 1

2m2 + 3

)
α5 (8)

In the Rayleigh approximation, only the lowest order contributions in α are considered. This is
equivalent to setting all an and bn to zero except b1, which reduces to

b1 = −2i

3

(
m2 − 1

m2 + 2

)
α3. (9)
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Quantity Temperature Wavelength (cm)
(◦C) 10 3.21 1.24 0.62

n 20 8.88 8.14 6.15 4.44
10 9.02 7.80 5.45 3.94
0 8.99 7.14 4.75 3.45
-8 — 6.48 4.15 3.10

κ 20 0.63 2.00 2.86 2.59
10 0.90 2.44 2.90 2.37
0 1.47 2.89 2.77 2.04
-8 — — 2.55 1.77

|Km|2 20 0.928 0.9275 0.9193 0.8926
10 0.9313 0.9313 0.9152 0.8726
0 0.9340 0.9340 0.9055 0.8312
-8 — — 0.8902 0.7921

Im(−Km) 20 0.00474 0.01883 0.0471 0.0915
10 0.00688 0.0247 0.0615 0.1142
0 0.01102 0.0335 0.0807 0.1441
-8 — — 0.1036 0.1713

Table 1: Components of the complex refractive index along with values for |Km|2 and Im(−Km)
as a function of radar wavelength and temperature for water. These data were taken from Table
4.1 of ?. Dashed lines indicate that data are not available.

Therefore, we see that in the Rayleigh approximation, equations (??), (??), and (??) reduce to

σs =
2

3

π2

λ4
|Km|2D6 (10)

σa =
π2

λ
Im(−Km)D3 (11)

σb =
π5

λ4
|Km|2D6, (12)

where the Km is given as

Km =
m2 − 1

m2 + 2
(13)

and m is the complex refractive index expressed as m = n − iκ. The Rayleigh approximation
applies when D ≤ λ/16. This is equivalent to assuming that the water drop acts as a simple
dipole antenna with a charge separation of 2 a.

Shown in the table below are values for the components of the complex refractive index m and
the quantity Km. These quantities are used when calculating the various radar cross sections
for spherical water drops.
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3 Hands-On Activities

We will now use the expressions of the absorption and scattering cross sections for the Rayleigh
approximation and the values for Im(-Km) and |Km|2 to examine the theoretical attenuation of ra-
dio waves in the presence of spherical liquid water drops for different temperatures and different
radar wavelengths. Values for Im(-Km) and |Km|2 can be found in Table ??. In the following exer-
cises, you will be asked to calculate the normalized cross section as a function of the normalized
drop diameter. The normalized cross section is simply given in terms of the cross section σ as
4σ/(πD2) and the normalized drop diameter is expressed in terms of the drop diameter D as
πD/λ. By normalizing these quantities, it is easier to apply the results to any radar wavelength
and to understand the cross sections in terms of the geometric size of the particles.

1. Create four separate plots of the normalized scattering cross sections (one plot for 20◦C,
one for 10◦C, one for 0 ◦C, and one for -8◦C) versus the normalized drop diameter at T = 0◦.
On each plot you will show the normalized cross section as a function of the normalized
drop diameter for the radar wavelengths given by λ = 0.62, 1.24, 3.21, and 10 cm.

2. Repeat the process for the normalized absorption cross section. That is produce four plots
(one for each temperature) on which you show the normalized cross section as a function
of the normalized drop diameter for the four radar wavelengths (λ = 0.62, 1.24, 3.21, and
10 cm).

3. Repeat the process for the normalized extinction cross section. Recall that this will capture
the additive contributions from scatter and absorption.

You can use NaN whenever the value is not defined (see excerpt of Matlab code). Compare
your results for the case of T = 0◦C with Figure 3.4 of ?.

Next we examine the radar cross sections for the more general case using Mie theory. Two
MATLAB functions are available at http://www.ou.edu/radar/.

Mie.m: Used to calculate the scattering efficiencies
Mie_abcd.m: Used to calculate the Mie coefficients (called by Mie.m)

The inputs of Mie.m are (m,x), where m = n + iκ and x = 2πa/λ. Note that the convention
for m used in the code is different than introduced above. The output is a nine element vector
containing n, κ, x, σe/(πa

2), σs/(πa
2), σa/(πa

2), σb/(πa
2), and two other parameters that we have

not discussed. That is, a call to the function would look like result = Mie(m, x); These routines
were written by Christian Mätzler of the Institut für Angewandte Physik in Switzerland [?].

1. Use values for n and κ from the class handouts available on desire2learn to reproduce
the left panel of Figure 3.3 of D&Z for λ = 10 cm and λ = 3.21 cm.

2. On a separate figure, create plots of the the full Mie expression for λ = 10 cm and λ =
3.21 cm at T = 0◦.
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3. Reproduce the steps in the second part, but this time also overlay on the figure your results
from Problem 1 taken for T = 0◦ and λ = 3.21 and 10 cm (Rayleigh approximation).
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Excerpt of MATLAB code used to find the cross sections in the Rayleigh approximation

% radar wavelength (mm);

lambda = [10 3.21 1.24 0.62]*10;

% temperature of water (C)

T_w = [20 10 0 -8];

% n from Battan Table 4.1

n_w = [8.88 8.14 6.15 4.44; ...

9.02 7.80 5.45 3.94; ...

8.99 7.14 4.75 3.45; ...

NaN 6.48 4.15 3.10];

% k from Battan Table 4.1

k_w = [0.63 2.00 2.86 2.59; ...

0.90 2.44 2.90 2.37; ...

1.47 2.89 2.77 2.04; ...

NaN NaN 2.55 1.77];

% Km^2 from Battan Table 4.1

Km2_w = [0.928 0.9275 0.9193 0.8926; ...

0.9313 0.9282 0.9152 0.8726; ...

0.9340 0.9300 0.9055 0.8312; ...

NaN NaN 0.8902 0.7921];

% Im(-Km) from Battan Table 4.1

ImKm_w = [0.00474 0.01883 0.0471 0.0915; ...

0.00688 0.0247 0.0615 0.1142; ...

0.01102 0.0335 0.0807 0.1441; ...

NaN NaN 0.1036 0.1713];
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