Chapter 4

Theories in Scientific Research

As we know from previous chapters, science is knowledge represented as a collection of "theories" derived using the scientific method. In this chapter, we will examine what is a theory, why do we need theories in research, what are the building blocks of a theory, how to evaluate theories, how can we apply theories in research, and also presents illustrative examples of five theories frequently used in social science research.

Theories

Theories are explanations of a natural or social behavior, event, or phenomenon. More formally, a scientific theory is a system of constructs (concepts) and propositions (relationships between those constructs) that collectively presents a logical, systematic, and coherent explanation of a phenomenon of interest within some assumptions and boundary conditions (Bacharach 1989).¹

Theories should explain why things happen, rather than just describe or predict. Note that it is possible to predict events or behaviors using a set of predictors, without necessarily explaining why such events are taking place. For instance, market analysts predict fluctuations in the stock market based on market announcements, earnings reports of major companies, and new data from the Federal Reserve and other agencies, based on previously observed *correlations*. Prediction requires only correlations. In contrast, explanations require *causations*, or understanding of cause-effect relationships. Establishing causation requires three conditions: (1) correlations between two constructs, (2) temporal precedence (the cause must precede the effect in time), and (3) rejection of alternative hypotheses (through testing). Scientific theories are different from theological, philosophical, or other explanations in that scientific theories can be empirically tested using scientific methods.

Explanations can be idiographic or nomothetic. **Idiographic explanations** are those that explain a single situation or event in idiosyncratic detail. For example, you did poorly on an exam because: (1) you forgot that you had an exam on that day, (2) you arrived late to the exam due to a traffic jam, (3) you panicked midway through the exam, (4) you had to work late the previous evening and could not study for the exam, or even (5) your dog ate your text book. The explanations may be detailed, accurate, and valid, but they may not apply to other similar situations, even involving the same person, and are hence not generalizable. In contrast,

¹ Bacharach, S. B. (1989). "Organizational Theories: Some Criteria for Evaluation," *Academy of Management Review* (14:4), 496-515.

nomothetic explanations seek to explain a class of situations or events rather than a specific situation or event. For example, students who do poorly in exams do so because they did not spend adequate time preparing for exams or that they suffer from nervousness, attention-deficit, or some other medical disorder. Because nomothetic explanations are designed to be generalizable across situations, events, or people, they tend to be less precise, less complete, and less detailed. However, they explain economically, using only a few explanatory variables. Because theories are also intended to serve as generalized explanations for patterns of events, behaviors, or phenomena, theoretical explanations are generally nomothetic in nature.

While understanding theories, it is also important to understand what theory is not. Theory is not data, facts, typologies, taxonomies, or empirical findings. A collection of facts is not a theory, just as a pile of stones is not a house. Likewise, a collection of constructs (e.g., a typology of constructs) is not a theory, because theories must go well beyond constructs to include propositions, explanations, and boundary conditions. Data, facts, and findings operate at the empirical or observational level, while theories operate at a conceptual level and are based on logic rather than observations.

There are many benefits to using theories in research. First, theories provide the underlying logic of the occurrence of natural or social phenomenon by explaining what are the key drivers and key outcomes of the target phenomenon and why, and what underlying processes are responsible driving that phenomenon. Second, they aid in sense-making by helping us synthesize prior empirical findings within a theoretical framework and reconcile contradictory findings by discovering contingent factors influencing the relationship between two constructs in different studies. Third, theories provide guidance for future research by helping identify constructs and relationships that are worthy of further research. Fourth, theories can contribute to cumulative knowledge building by bridging gaps between other theories and by causing existing theories to be reevaluated in a new light.

However, theories can also have their own share of limitations. As simplified explanations of reality, theories may not always provide adequate explanations of the phenomenon of interest based on a limited set of constructs and relationships. Theories are designed to be simple and parsimonious explanations, while reality may be significantly more complex. Furthermore, theories may impose blinders or limit researchers' "range of vision," causing them to miss out on important concepts that are not defined by the theory.

Building Blocks of a Theory

David Whetten (1989) suggests that there are four building blocks of a theory: constructs, propositions, logic, and boundary conditions/assumptions. Constructs capture the "what" of theories (i.e., what concepts are important for explaining a phenomenon), propositions capture the "how" (i.e., how are these concepts related to each other), logic represents the "why" (i.e., why are these concepts related), and boundary conditions/assumptions examines the "who, when, and where" (i.e., under what circumstances will these concepts and relationships work). Though constructs and propositions were previously discussed in Chapter 2, we describe them again here for the sake of completeness.

Constructs are abstract concepts specified at a high level of abstraction that are chosen specifically to explain the phenomenon of interest. Recall from Chapter 2 that constructs may be unidimensional (i.e., embody a single concept), such as weight or age, or multi-dimensional (i.e., embody multiple underlying concepts), such as personality or culture. While some

constructs, such as age, education, and firm size, are easy to understand, others, such as creativity, prejudice, and organizational agility, may be more complex and abstruse, and still others such as trust, attitude, and learning, may represent temporal tendencies rather than steady states. Nevertheless, all constructs must have clear and unambiguous operational definition that should specify exactly how the construct will be measured and at what level of analysis (individual, group, organizational, etc.). Measurable representations of abstract constructs are called **variables**. For instance, intelligence quotient (IQ score) is a variable that is purported to measure an abstract construct called intelligence. As noted earlier, scientific research proceeds along two planes: a theoretical plane and an empirical plane. Constructs are conceptualized at the theoretical plane, while variables are operationalized and measured at the empirical (observational) plane. Furthermore, variables may be independent, dependent, mediating, or moderating, as discussed in Chapter 2. The distinction between constructs (conceptualized at the theoretical level) and variables (measured at the empirical level) is shown in Figure 4.1.

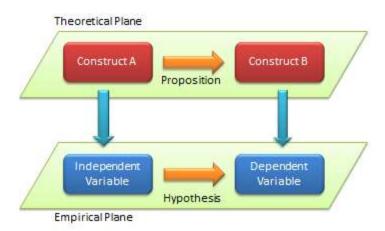


Figure 4.1. Distinction between theoretical and empirical concepts

Propositions are associations postulated between constructs based on deductive logic. Propositions are stated in declarative form and should ideally indicate a cause-effect relationship (e.g., if X occurs, then Y will follow). Note that propositions may be conjectural but MUST be testable, and should be rejected if they are not supported by empirical observations. However, like constructs, propositions are stated at the theoretical level, and they can only be tested by examining the corresponding relationship between measurable variables of those constructs. The empirical formulation of propositions, stated as relationships between variables, is called **hypotheses**. The distinction between propositions (formulated at the theoretical level) and hypotheses (tested at the empirical level) is depicted in Figure 4.1.

The third building block of a theory is the **logic** that provides the basis for justifying the propositions as postulated. Logic acts like a "glue" that connects the theoretical constructs and provides meaning and relevance to the relationships between these constructs. Logic also represents the "explanation" that lies at the core of a theory. Without logic, propositions will be ad hoc, arbitrary, and meaningless, and cannot be tied into a cohesive "system of propositions" that is the heart of any theory.

Finally, all theories are constrained by **assumptions** about values, time, and space, and **boundary conditions** that govern where the theory can be applied and where it cannot be applied. For example, many economic theories assume that human beings are rational (or

boundedly rational) and employ utility maximization based on cost and benefit expectations as a way of understand human behavior. In contrast, political science theories assume that people are more political than rational, and try to position themselves in their professional or personal environment in a way that maximizes their power and control over others. Given the nature of their underlying assumptions, economic and political theories are not directly comparable, and researchers should not use economic theories if their objective is to understand the power structure or its evolution in a organization. Likewise, theories may have implicit cultural assumptions (e.g., whether they apply to individualistic or collective cultures), temporal assumptions (e.g., whether they apply to early stages or later stages of human behavior), and spatial assumptions (e.g., whether they apply to certain localities but not to others). If a theory is to be properly used or tested, all of its implicit assumptions that form the boundaries of that theory must be properly understood. Unfortunately, theorists rarely state their implicit assumptions clearly, which leads to frequent misapplications of theories to problem situations in research.

Attributes of a Good Theory

Theories are simplified and often partial explanations of complex social reality. As such, there can be good explanations or poor explanations, and consequently, there can be good theories or poor theories. How can we evaluate the "goodness" of a given theory? Different criteria have been proposed by different researchers, the more important of which are listed below:

- **Logical consistency:** Are the theoretical constructs, propositions, boundary conditions, and assumptions logically consistent with each other? If some of these "building blocks" of a theory are inconsistent with each other (e.g., a theory assumes rationality, but some constructs represent non-rational concepts), then the theory is a poor theory.
- **Explanatory power:** How much does a given theory explain (or predict) reality? Good theories obviously explain the target phenomenon better than rival theories, as often measured by variance explained (R-square) value in regression equations.
- **Falsifiability:** British philosopher Karl Popper stated in the 1940's that for theories to be valid, they must be falsifiable. Falsifiability ensures that the theory is potentially disprovable, if empirical data does not match with theoretical propositions, which allows for their empirical testing by researchers. In other words, theories cannot be theories unless they can be empirically testable. Tautological statements, such as "a day with high temperatures is a hot day" are not empirically testable because a hot day is defined (and measured) as a day with high temperatures, and hence, such statements cannot be viewed as a theoretical proposition. Falsifiability requires presence of rival explanations it ensures that the constructs are adequately measurable, and so forth. However, note that saying that a theory is falsifiable is not the same as saying that a theory should be falsified. If a theory is indeed falsified based on empirical evidence, then it was probably a poor theory to begin with!
- **Parsimony:** Parsimony examines how much of a phenomenon is explained with how few variables. The concept is attributed to 14th century English logician Father William of Ockham (and hence called "Ockham's razor" or "Occam's razor), which states that among competing explanations that sufficiently explain the observed evidence, the simplest theory (i.e., one that uses the smallest number of variables or makes the fewest

assumptions) is the best. Explanation of a complex social phenomenon can always be increased by adding more and more constructs. However, such approach defeats the purpose of having a theory, which are intended to be "simplified" and generalizable explanations of reality. Parsimony relates to the degrees of freedom in a given theory. Parsimonious theories have higher degrees of freedom, which allow them to be more easily generalized to other contexts, settings, and populations.

Approaches to Theorizing

How do researchers build theories? Steinfeld and Fulk (1990)² recommend four such approaches. The first approach is to build theories inductively based on observed patterns of events or behaviors. Such approach is often called "grounded theory building", because the theory is grounded in empirical observations. This technique is heavily dependent on the observational and interpretive abilities of the researcher, and the resulting theory may be subjective and non-confirmable. Furthermore, observing certain patterns of events will not necessarily make a theory, unless the researcher is able to provide consistent explanations for the observed patterns. We will discuss the grounded theory approach in a later chapter on qualitative research.

The second approach to theory building is to conduct a bottom-up conceptual analysis to identify different sets of predictors relevant to the phenomenon of interest using a predefined framework. One such framework may be a simple input-process-output framework, where the researcher may look for different categories of inputs, such as individual, organizational, and/or technological factors potentially related to the phenomenon of interest (the output), and describe the underlying processes that link these factors to the target phenomenon. This is also an inductive approach that relies heavily on the inductive abilities of the researcher, and interpretation may be biased by researcher's prior knowledge of the phenomenon being studied.

The third approach to theorizing is to extend or modify existing theories to explain a new context, such as by extending theories of individual learning to explain organizational learning. While making such an extension, certain concepts, propositions, and/or boundary conditions of the old theory may be retained and others modified to fit the new context. This deductive approach leverages the rich inventory of social science theories developed by prior theoreticians, and is an efficient way of building new theories by building on existing ones.

The fourth approach is to apply existing theories in entirely new contexts by drawing upon the structural similarities between the two contexts. This approach relies on reasoning by analogy, and is probably the most creative way of theorizing using a deductive approach. For instance, Markus (1987)³ used analogic similarities between a nuclear explosion and uncontrolled growth of networks or network-based businesses to propose a critical mass theory of network growth. Just as a nuclear explosion requires a critical mass of radioactive material to sustain a nuclear explosion, Markus suggested that a network requires a critical mass of users to sustain its growth, and without such critical mass, users may leave the network, causing an eventual demise of the network.

² Steinfield, C.W. and Fulk, J. (1990). "The Theory Imperative," in *Organizations and Communications Technology*, J. Fulk and C. W. Steinfield (eds.), Newbury Park, CA: Sage Publications.

³ Markus, M. L. (1987). "Toward a 'Critical Mass' Theory of Interactive Media: Universal Access, Interdependence, and Diffusion," *Communication Research* (14:5), 491-511.