NORMAN, OKLA. – Researchers from the University of Oklahoma have made significant breakthroughs in a promising technology for efficient energy conversion and chemical processing. Two recent studies involving protonic ceramic electrochemical cells, called PCECs, address significant challenges in electrochemical manufacturing and efficiency. These innovations are a crucial step toward reliable and affordable solutions for hydrogen production and clean energy storage.
The studies, published in the prestigious Nature family of scientific journals, were led by Hanping Ding, Ph.D., an assistant professor in the School of Aerospace and Mechanical Engineering at the University of Oklahoma.
PCECs have traditionally struggled to maintain performance under the extreme conditions required for commercial use. In a study featured in Nature Synthesis, Ding and his colleagues reported a new approach that eliminates the need for cerium-based materials, which are prone to breakdown under high steam and heat. Instead, the team engineered a method to manufacture pure barium zirconate-based electrolytes that remain stable at record-low operating temperatures, a development that allows the system to run efficiently under intense electrochemical conditions.
A second study, published in Nature Communications, tackled another crucial component: the oxygen electrode. Led by Ding’s team and graduate student Shuanglin Zheng, the researchers developed a new ultra-porous nano-architecture electrode with triple phase conductivity, meaning it can transport electrons, oxygen ions and protons, which dramatically improves electrolysis kinetics. This design allows cells to perform better under heavy use and highlights the critical role of optimizing electrode microstructure to balance surface activity and durability. This development marks a critical step toward realizing efficient, reversible, and high-performance PCECs for both hydrogen production and electricity generation.
“These findings represent significant advancements in the field of high-temperature steam electrolysis,” said Ding. “By addressing key challenges in electrolyte processing and electrode design, we are unlocking the full potential of PCECs for sustainable energy applications.”
The dual breakthroughs represent a meaningful step toward broader deployment of PCECs in hydrogen production, power generation and chemical manufacturing. In addition to improving core performance, Ding’s research offers insights relevant to other technologies, such as alkaline fuel cells, water electrolyzers and biosensors.
Together, the findings underscore OU’s expanding role in energy innovation, particularly in developing next-generation systems that aim to reduce emissions and transition global infrastructure toward more sustainable energy sources.
About the projects
“Sintering protonic zirconante cells with enhanced electrolysis stability and Faradaic efficiency” is published in Nature Synthesis at https://www.nature.com/articles/s44160-025-00765-z
“Enhancing Surface Activity and Durability in Triple Conducting Electrode for Protonic Ceramic Electrochemical Cells” is published in Nature Communications at https://www.nature.com/articles/s41467-025-59477-9
About the University of Oklahoma
Founded in 1890, the University of Oklahoma is a public research university located in Norman, Oklahoma. As the state’s flagship university, OU serves the educational, cultural, economic and health care needs of the state, region and nation. For more information about the university, visit www.ou.edu.
Mary Margaret Holt, dean of the University of Oklahoma Weitzenhoffer Family College of Fine Arts, has been honored with the Paseo Arts Association’s Lifetime Achievement Award, recognizing her leadership and contributions to Oklahoma’s arts community.
With winter weather already bringing low temperatures to the state, the Oklahoma Poison Center is urging residents to take extra precautions to avoid carbon monoxide (CO) poisoning as they begin heating their homes for the winter season. Carbon monoxide is a colorless, odorless gas that can be deadly when inhaled in large quantities, and it poses a heightened risk as people rely on heating devices for warmth during cold weather.
Thanks to support from the Chickasaw Nation, the University of Oklahoma College of Law has announced the continuation and expansion of the Chickasaw Nation – Henry Family Lecture Series. Under the new name, the event will continue to showcase thought-provoking discourse surrounding the rule of law.