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Coal rank, generalized for all coal beds at or near the surface, in the eastern Oklahoma coalfield has been
known since 1915. Near the surface (depths <305 m, <1000 ft), coal rank increases from high volatile
bituminous to low volatile bituminous from west to east in the Arkoma Basin in Oklahoma. The rank of
subsurface (depths >305m, >1000 ft) coals in Arkoma Basin coalbed methane (CBM) prospects was
previously unknown. A new Hartshorne coal (Middle Pennsylvanian) rank map is based on mean maximum
vitrinite reflectance values of 0.76% to 2.41% Ryax from 70 coal samples from vertical depths of 0 (surface) to
Coalbed methane 1327 m (4355 ft). Hartshorne coal rank in the subsurface increases from high-volatile bituminous to
Hartshorne coal semianthracite from west to east in the Arkoma Basin in Oklahoma. Bituminous rank boundaries changed
Rank considerably from earlier surface rank maps (primarily by increasing the area of medium volatile bituminous
Vitrinite reflectance rank coal in the subsurface) and revealed a previously unknown semianthracite rank area. This discrepancy is
Arkoma basin significant because the rank of deep (>305 m, >1000 ft) coal resource assessments and CBM exploration
Oklahoma projects have been based on shallow coal rank assignments.

A total of 2635 Hartshorne (Hartshorne, Lower Hartshorne, and Upper Hartshorne) CBM wells have been
completed in Oklahoma since 1988. Most (1610) wells are horizontal with lateral lengths ranging from 4 to
1498 m (14 to 4914 ft; an average of 669 m [2195 ft]). Coal in most Hartshorne CBM wells is medium volatile
bituminous rank. Hartshorne coal is semianthracite rank in about 160 CBM wells in Le Flore County. The four
Hartshorne CBM wells with the highest initial potential (IP) gas rates (48 to 65 thousand cubic meters per day,
Mcmd; 1.7 to 2.3 million cubic feet per day, MMcfd) are medium volatile bituminous rank from horizontal
wells in Haskell and Pittsburg counties. IP gas rates<28.3 Mcmd (<1 MMcfd) in low volatile bituminous and
semianthracite rank Hartshorne horizontal CBM wells may be low due to complications in drilling into high
rank coals with cleat spacing <1 cm, to stimulation differences, or to gas migration into adjacent sandstone
channels.
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1. Introduction

The eastern Oklahoma coalfield is in the southern part of the western
region of the Interior Coal Province of the United States (Campbell,
1929). The coal region continues northward into Kansas and eastward
into Arkansas (Tully, 1996). Friedman (1974) divided the Oklahoma
coalfield into the northeast Oklahoma shelf and Arkoma Basin based on
physiographic and structural differences (Fig. 1). The commercial coal
belt is where coal beds are mineable at more than 25 cm (10 in.) thick.
The noncommercial coal-bearing region has limited information on coal
thickness and quality or contains coals that are too thin, of low quality,
or too deep for strip mining. The western boundary of the noncom-
mercial coal-bearing region is uncertain (Wood and Bour, 1988).
Coalbed methane (CBM) drilling has occurred in both the commercial
coal belt and the noncommercial coal-bearing region.

E-mail address: bcardott@ou.edu.

0166-5162/$ - see front matter. Published by Elsevier B.V.
doi:10.1016/j.coal.2011.07.002

About 40 named banded coal beds of Desmoinesian to Missourian
age (Middle to Late Pennsylvanian) in the eastern Oklahoma coalfield
are <03 to 3m (<1 to 10ft) thick (Hemish, 1988). Since 1915,
numerous maps have shown rank generalized for all coal beds at or
near the surface (depths <305 m, <1000 ft) of high-volatile bitumi-
nous in the northeast Oklahoma shelf and high-volatile bituminous to
low-volatile bituminous (increasing from west to east) in the Arkoma
Basin (Fig. 1). Prior to CBM drilling, coal rank in the subsurface was
known regionally only imprecisely from widely distributed under-
ground coal-mine samples and coal exploration core samples. As in
the deepest underground coal mine in Oklahoma (Lone Star Steel Co.
Carbon No. 5 mine at 488 m (1600 ft) deep to the McAlester coal), the
rank of deep coal in Oklahoma is often unknown (Friedman, 2010).

A Hartshorne coal-rank map based on mean maximum vitrinite
reflectance (Ryax) can be applied to the influence of rank on Arkoma
Basin CBM activity and a more accurate assignment of rank to future
Oklahoma deep (>305 m,>1000 ft) coal resource assessments. The rank
of deep coal beds was previously extrapolated to the subsurface in an



36 B.J. Cardott / International Journal of Coal Geology 108 (2013) 35-46

96° 957
KANSAS L a7°
S [ NOWATA
Sabe E oTTAWA |-
= %
2 e
s x
Northtlaaslt S
Oklahoma
Sh elf DELAWARE | _
PAWNEE MAYES %
z
w
7
PAYNE
36°
CREEK CHEROKEE ADAIR
LINCOLN
SEQUOYAH
|| okFuskee
~
SHMINOLE HU
-
sin ;
LATIMER
contoll LE FLORE
Explanation

hvb High volatile bituminous

‘ mvb Medium volatile bituminous [
i ATOKA Ivb  Low volatile bituminous

=== Arkoma Basin boundary

=— = Rank boundary

[ Ccommercial coal belt

1

Noncommercial
coal-bearing region

JOHNSTON

MARSHALL | o4

50 Miles
|

1
80 Kilometers
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is from Northcutt and Campbell (1998).
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Hartshorne coal sample information and vitrinite reflectance data arranged by increasing township and range. (OPL = Oklahoma Geological Survey Organic Petrography Laboratory;
PSOC = Pennsylvania State University, Penn State Office of Coal Research; hvAb = high volatile A bituminous; mvb = medium volatile bituminous; lvb =low volatile bituminous;
sa = semianthracite; NA = not available).

Sample Sample Operator Name Well/Mine Name Sample Latitude Longitude County Coal Name Depth Rpax Rmax N Standard Rank
ID Type (FT) Range Deviation

1 OPL Orion Exploration 1-5 Claudine Cuttings 34.93 —95.84  Pittsburg  Upper 1806 0.85 0.77- 100 0.04 hvAb
1237 Hartshorne 0.96

2 OPL P&K Coal Company  Gowen Pit (strip mine) Channel 34.87 —95.46 Latimer Lower Surface 0.76 0.62- 100 0.04 hvAb
419 Hartshorne 0.86

3 OPL OGS Core C-LA-1 Core 34.93 —95.15  Latimer Lower 165 0.80 0.65- 100 0.06 hvAb
457 Hartshorne 0.92

4 OPL Fractal Operating 1-5 Noggle Cuttings 34.94 —95.11 Latimer Lower 1252 098 0.87- 100 0.05 hvAb
1167 Hartshorne 1.09

5 OPL Farrell-Cooper Pine Mountain Channel 34.88 —94.62  LeFlore Lower Surface 134 1.22- 100 0.04 mvb
1043 Mining (strip mine) Hartshorne 1.47

6 OPL Farrell-Cooper Pine Mountain Channel 34.87 —9463  Le Flore Lower Surface 1.28 1.21- 100 0.03 mvb
934 Mining Bowman Pit Hartshorne 1.38

(strip mine)

7 OPL Turner Brothers Heavener (strip mine) Channel 34.87 —94.67 Le Flore Lower Surface 1.27 1.16- 100 0.04 mvb
662 Hartshorne 1.38

8 OPL Highway 59 Roadcut Outcrop Grab 34.87 —9462  Le Flore Lower Surface 1.27 1.18- 100 0.03 mvb
1039 Hartshorne 1.37

9 PSOC Howe Mining Howe Mine No. 1 Channel 34.92 —94.61 Le Flore Lower 350 146 137- 100 NA mvb
142 Company (underground mine) Hartshorne 1.55

10 OPL El Paso Production ~ GBP 1-13H Cuttings 34.9 —94.52  Le Flore Hartshorne 2068 1.70 1.58- 100 0.04 Ivb
1169 Co. 1.84

11 OPL Farrell-Cooper Heavener East No. 2 Grab 34.88 —94.51 Le Flore Lower Surface 1.38 1.30- 100 0.03 mvb
1145 Mining (auger mine) Hartshorne 145

12 OPL Farrell-Cooper HE 09-1 Core 34.91 —9445  Le Flore Lower 144 141 136- 100 0.03 mvb
1346 Mining Hartshorne 1.50

13 OPL Farrell-Cooper Heavener East Grab 349 —9446  LeFlore  Lower Surface 143 1.35- 100 0.04 mvb
1153 Mining (auger mine) Hartshorne 1.52

14 OPL Chesapeake 1-13H Blevins Cuttings 34.99 —96.1 Hughes Hartshorne 3239 090 0.82- 100 0.03 hvAb
1227 Operating 0.99

15 OPL Tilford Pinson 1H-19 Stewart Cuttings 34.97 —95.98  Pittsburg Hartshorne 3390 099 0.90- 100 0.04 hvAb
1242 Exploration 1.07

16 OPL Orion Exploration 2-25 Hotubbee Cuttings 34.96 —95.57 Pittsburg  Upper 3660 138 1.30- 100 0.03 mvb
1238 Hartshorne 1.49

17 OPL Jay Petroleum 7-9 Hyla Cuttings 35.01 —95.52  Pittsburg Hartshorne 2111 1.23 1.17- 100 0.03 mvb
1217 133

18 OPL Samson Resources 1-11H Lake Wayne Cuttings 35.01 —95.38 Latimer Hartshorne 3246 128 1.21- 100 0.03 mvb
1225 137

19 OPL Samson 1-17H Mollie Cuttings 34.99 —95.33  Latimer Hartshorne 3026 117 1.12- 100 0.02 mvb
1246 1.22

20 OPL Fractal Operating 1-31 Booth Cuttings 34.94 —95.13 Latimer Lower 1570 0.89 0.78- 100 0.05 hvAb
1165 Hartshorne 1.01

21 OPL Fractal Operating 1-32 Thrift Cuttings 34.94 —95.12  Latimer Lower 1516 098 0.90- 100 0.03 hvAb
1166 Hartshorne 1.05

22 OPL Williams Company 3-8 Wil E Coyote Cuttings 35.01 —94.8 Le Flore Hartshorne 4355 241 231- 100 0.06 sa
1163 2.53

23 OPL Williams Company  1A-18 Penelope Cuttings 35 —94.81 Le Flore Hartshorne 4233 232 2.13- 100 0.07 sa
1164 247

24 OPL Vectra 1H-30 Gist Cuttings 34.96 —94.8 Le Flore Lower 2267 175 1.68- 100 0.04 Ivb
1203 Hartshorne 1.85

25 OPL Vectra 32H Morris Cuttings 34.96 —94.8 Le Flore Lower 1700 1.59 1.53- 100 0.04 Ivb
1204 Hartshorne 1.71

26 OPL Farrell-Cooper Bull Hill (strip mine) Grab 34.95 —94.81 Le Flore Lower Surface 1.28 1.23- 100 0.03 mvb
1384 Mining Hartshorne 1.36

27 El Paso CH 2-16 Core 35 —94.67 Le Flore Hartshorne 2357 216 2.03- NA NA sa

2.30

28 OPL El Paso Production ~ 7-21H Kerr Cuttings 34.98 —94.68 Le Flore Lower 2394 222 2.05- 100 0.07 sa
1241 Co. Hartshorne 2.39

29 OPL Aztec Energy 10-11 Barnes Core 35 —94.55 Le Flore Upper 1522 206 1.93- 100 0.05 sa
1247 Hartshorne 2.21

30 OPL Bear Productions 2 Hudgins Cuttings 34.98 —94.57  Le Flore L. 1022 1.83 1.72- 100 0.06 lvb
1127 Hartshorne 1.95

31 OPL Bear Productions 1 Gatlin Cuttings 34.97 —94.55 Le Flore L. 1105 181 1.71- 100 0.05 hvAb
1136 Hartshorne 1.96

32 OPL Bear Productions 1 Christopher Cuttings 34.97 —9456  Le Flore Hartshorne 946 1.83 1.69- 100 0.06 hvAb
1137 1.95

33 OPL Panther Energy 2H-34 Maddy Cuttings 35.04 —96.23 Hughes Hartshorne 3176 0.82 0.72- 100 0.03 hvAb
1288 0.90

34 OPL Chesapeake 1-16H Riner Cuttings 35.09 —96.04  Pittsburg Hartshorne 2492 090 0.82- 100 0.03 hvAb
1208 Operating 1.02

35 OPL Ardmore Production 1H-15 Quick Draw Cuttings 35.08 —95.93 Pittsburg  Hartshorne 2595 090 0.81- 100 0.03 hvAb
1231 & Exploration 0.97

(continued on next page)
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Table 1 (continued)

Sample Sample Operator Name Well/Mine Name Sample Latitude Longitude County Coal Name Depth Rmax Rmax N Standard Rank
ID Type (FT) Range Deviation

36 OPL Orion Exploration 1-35 Orval Cuttings 35.03 —95.81 Pittsburg  Hartshorne 3157 122 1.16- 100 0.03 mvb
1239 1.30

37 OPL Chesapeake 1-8H Harper Cuttings 35.09 —95.75 Pittsburg  Hartshorne 2999 128 1.2- 100 0.03 mvb
1224 Operating 1.36

38 OPL Petroquest Energy ~ 3-22 Wood Trust Cuttings 35.06 —95.71 Pittsburg  Hartshorne 3074 136 1.29- 100 0.03 mvb
1229 142

39 El Paso CH 1-21 Core 35.07 —95.2 Haskell Hartshorne 2450 134 129- NA NA mvb

1.38

40 OPL Panther Energy 2H-11 Gabriel Cuttings 35.17 —95.9 McIntosh  Hartshorne 2228 1.05 096- 100 0.03 hvAb
1202 1.14

41 OPL Williams Company  1-23 Haley Cuttings 35.15 —95.79  Pittsburg  Hartshorne 3451 142 134- 100 0.03 mvb
1182 1.49

42 OPL Williams Company  1-16 Jazzmyn Cuttings 35.17 —95.73 Pittsburg  Hartshorne 2615 141 1.34- 100 0.04 mvb
1156 1.55

43 OPL Williams Company ~ 3-26 Ivey Cuttings 35.13 —95.7 Pittsburg  Hartshorne 3161 145 135- 100 0.05 mvb
1157 1.63

44 OPL Petroquest Energy 1-29H Kenny Leake Cuttings 35.14 —95.65 Pittsburg  Hartshorne 2918 139 1.33- 100 0.03 mvb
1234 147

45 OPL Williams Company  3-4 Kobe Cuttings 35.19 —95.52 Pittsburg  Hartshorne 2845 152 142- 100 0.04 Ivb
1181 1.62

46 OPL Williams Company  2-10 Hook Cuttings 35.18 —95.5 Pittsburg  Hartshorne 2300 136 1.26- 100 0.06 mvb
1158 1.60

47 OPL Williams Company  4-34 Izzy Cuttings 35.13 —95.39 Pittsburg  Hartshorne 2562 119 1.13- 100 0.03 mvb
1159 133

48 OPL Williams Company  4-13 Brashears Cuttings 35.17 —95.25 Haskell Hartshorne 1571 120 1.13- 100 0.03 mvb
1160 1.32

49 OPL Williams Company ~ 7-22 Domino Cuttings 35.15 —953 Haskell Hartshorne 1717 118 1.09- 100 0.05 mvb
1161 1.37

50 OPL Williams Company  4-32 Penny Cuttings 35.13 —95.33 Haskell Hartshorne 1650 1.09 0.99- 100 0.04 hvAb
1162 1.26

51 OPL Williams Production 2-25 Poncho Cuttings 35.13 —95.05 Haskell Hartshorne 1012 149 139- 100 0.03 mvb
1265 1.57

52 OPL Williams Production 4-25 Poncho Cuttings 35.14 —95.05 Haskell Hartshorne 884 142 133- 100 0.03 mvb
1266 1.49

53 OPL Great National Corp. Federal Pit (strip mine) Channel 35.16 —94.96 Haskell Upper Surface 135 1.21- 100 0.05 mvb
351 Hartshorne 1.48

54 OPL Georges Colliers Inc. Milton (strip mine) Grab 35.15 —94.89  Le Flore Hartshorne Surface 1.59 1.50- 100 0.04 lvb
1152 1.78

55 OPL Farrell-Cooper Rock Island (strip Channel 35.18 —94.48 Le Flore Lower Surface 1.83 1.74- 100 0.05 lvb
1344  Mining mine) Hartshorne 193

56 OPL IRIS Resources 31-4 Dubois Cuttings 35.12 —9449  Le Flore Upper 1347 1.85 1.77- 100 0.05 lvb
1257 Hartshorne 1.99

57 OPL Panther Energy 1H-27 Tanner Cuttings 35.23 —95.81 McIntosh ~ Hartshorne 3345 144 139- 100 0.03 mvb
1287 1.50

58 OPL Mahalo Energy 4-3H CBM Skip Cuttings 35.28 —95.72 McIntosh  Hartshorne 1955 130 1.23- 100 0.02 mvb
1230 135

59 OPL G.M. Oil Properties ~ 1H-8 Hunton Season Cuttings 35.26 —95.75 Mcintosh  Hartshorne 2160 1.27 1.22- 100 0.02 mvb
1249 135

60 OPL K&R Coal Company Ryan No. 2 (strip mine) Channel 35.23 —95.11 Haskell Hartshorne Surface 1.17 1.10- 100 0.03 mvb
844 1.23

61 OPL K&R Coal Company  Ryan (strip mine) Channel 35.21 —95.09  Haskell Hartshorne Surface 1.22 1.14- 100 0.04 mvb
513 133

62 OPL OGS Core C-HA-2 Ritter Property Core 35.22 —94.383 Haskell Hartshorne 134 139 1.33- 100 0.03 mvb
454 1.50

63 OPL K&R Coal Company  Sunset Corners Test Channel 35.23 —94.72 Le Flore Hartshorne Surface 1.78 1.69- 100 0.04 lvb
845 Burn (strip mine) 1.91

64 OPL IRIS Resources 34-2 Dale Cuttings 35.2 —94.75 Le Flore Hartshorne 1039 187 1.76- 100 0.05 Ivb
1252 2.00

65 OPL Coal Creek Minerals Red Bank Creek Grab 35.25 —94.7 Le Flore Hartshorne Surface 1.85 1.74- 100 0.04 lvb
1243 (underground mine) 1.97

66 OPL CWF Associates 27-9 G.W. Eagleton Core 35.22 —94.64 Le Flore Lower 1186 2.02 1.87- 100 0.06 lvb
1378 Hartshorne 2.15

67 OPL CWEF Associates 31-8 LW. Stiles Core 35.21 —94.69 Le Flore Lower 1214 2.00 1.90- 100 0.04 Ivb
1379 Hartshorne 2.10

68 OPL Georges Colliers Inc. Pollyanna No. Grab 35.22 —94.57 Le Flore Hartshorne 300 1.84 1.74- 100 0.05 lvb
1131 8 (underground mine) 2.03

69 OPL Rio Vista Operating  2-29 Urquhart Cuttings 35.31 —95.53  McIntosh Hartshorne 1390 118 1.09- 100 0.03 mvb
1324 1.26

70 OPL Outcrop Grab 35.47 —95.15 Muskogee Hartshorne Surface 1.03 0.94- 100 0.03 hvAb
319 1.11

estimate of remaining coal resources of Oklahoma (Friedman, coal rank). Lessons learned from the successes and challenges of

1974). Knowing the rank of coal is important in selecting high drilling into thin (<3 m, <10 ft thick), Pennsylvanian-age, banded
rank coals for combustion, carbonization, gasification, and CBM bituminous and semianthracite rank coals of Oklahoma may be
exploration (e.g., gas-in-place generally increases with increasing applied to other CBM projects.
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2. Surface coal rank maps refined the isocarb contours (Croneis, 1927; Damberger, 1974;
Fuller, 1920; Hendricks, 1935; lannacchione et al., 1983; Miser, 1934;

The first surface-coal-rank map of the Oklahoma coalfield was based Thom, 1934; Wilson, 1971). Burgess (1974) prepared a thermal-alter-

on fixed-carbon content (White, 1915). Subsequent surface-coal-rank ation-isocarb map of the Arkoma Basin interpreted from kerogen and
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coal fixed-carbon data. Houseknecht et al. (1992 ) prepared a Hartshorne
coal isoreflectance map based on vitrinite reflectance, fixed carbon and
Btu data (converted to equivalent vitrinite-reflectance values) from
surface and shallow subsurface samples.

Coal-rank boundaries generalized for all coal beds at or near the
surface (depths <305 m, <1000 ft) based on vitrinite reflectance and coal
chemistry data are shown in Fig. 1. The rank of coal beds, determined
from outcrop, coal strip mine, and shallow (<143 m, <470 ft) core
samples, ranges from high volatile to low volatile bituminous, increasing
from west to east in the Arkoma Basin in Oklahoma. Coal rank increases
to semianthracite in Arkansas (Tully, 1996).

3. Methods

Grab and channel samples of Hartshorne coal were obtained from
outcrop, coal strip and underground mines, shallow core, and well
cuttings from CBM wells. Unwashed Hartshorne coal well cuttings were
obtained directly from CBM well operators. Samples were washed with
water in an 18-mesh sieve, dried, and prepared into crushed-particle
pellets. Maximum vitrinite reflectance (Rya.x) Mmeasurements were
made on polished pellets following ASTM D-2798-91 (ASTM, 2010).
Sample information and data are in Table 1. Sample depths range from
0 (surface) to 1327 m (4355 ft; total vertical depths). Supplemental
Hartshorne coal vitrinite reflectance data came from the Pennsylvania
State University Penn State Coal Sample Bank and Data Base (PSOC,
1990) and Pratt and Mavor (2005; El Paso cores).

Wells drilled for CBM in Oklahoma were tabulated from comple-
tion reports (form 1002A) reported to the Oklahoma Corporation
Commission by oil and gas operators. CBM well distribution maps
were prepared based on information provided by the operator.

4. Subsurface Hartshorne coal rank

The Hartshorne coal (Hartshorne Formation; Desmoinesian age,
Middle Pennsylvanian) is the oldest and thickest commercial coal bed

in Oklahoma. The coal is a single bed in the northern part of the
Arkoma Basin and splits into two members (Upper Hartshorne and
Lower Hartshorne) in the southern part of the Arkoma Basin (Hemish
and Suneson, 1997). The Hartshorne coal-split line is shown in Fig. 2.
The Lower Hartshorne coal has a maximum thickness of 2 m (7.0 ft),
while the Upper Hartshorne coal is up to 1.7 m (5.6 ft) thick (Hemish
and Suneson, 1997). The thickest (3 m; 10 ft) occurrence of coal in
Oklahoma is the Hartshorne coal in an abandoned coal strip mine
exposure south of the Hartshorne coal-split line in northern Latimer
County (Hemish, 1999; Wilson, 1970).

The northern limit of the Hartshorne Formation is in northern
Muskogee and Okmulgee counties (Fig. 2). Sandstone channels in the
Hartshorne Formation occur in the southern part of the Arkoma Basin
(Fig. 2; Andrews et al., 1998). The sandstone channels were fluvially
dominated with a westerly flow direction. The Lower Hartshorne coal

800 8

700 +— O Northeast Oklahoma Shelf A /
M Arkoma Basin \

/- Gas Price \
500 \

600 1T

400
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i P——
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Fig. 5. Histogram showing numbers of Oklahoma coalbed methane well completions,
1988-2009. Oklahoma annual average wellhead natural gas price (not inflation
adjusted) is from Soltani, 2010.



B.J. Cardott / International Journal of Coal Geology 108 (2013) 35-46 41

is absent where eroded by the upper member incised channels or thin
where the lower member sandstone is thickest; the Upper Hartshorne
coal is locally missing or thin where the upper member sandstone is
thickest (Hemish and Suneson, 1997).

A Hartshorne coal rank map (Fig. 3), based on mean maximum
vitrinite reflectance values (Table 1), of the Arkoma Basin was prepared
when grab samples from underground coal mines and subsurface well
cuttings from CBM drillholes became available for analysis. Mean
maximum vitrinite reflectance values range from 0.76% to 2.41% Rpax
based on 100 measurements per sample (ASTM, 2010). Coal-rank
boundaries are from Davis (1978): high volatile A bituminous, 0.71% to
1.10% Rpnax;, medium volatile bituminous, 1.10% to 1.50% Rpax; low
volatile bituminous, 1.50% to 2.05% R.x; Semianthracite, 2.05% to 3.00%
Rmax (approximate). In the subsurface, Hartshorne coal rank increases
from high volatile bituminous to semianthracite from west to east in the
Arkoma Basin in Oklahoma. Sample availability is insufficient to define
the rank boundaries where lines are dashed.

The Hartshorne Formation in the Arkoma Basin is highly faulted
and folded into broad synclines and tight anticlines that strike
east-northeast (Andrews et al., 1998). Overall, the Hartshorne coal
rank does not follow present-day depth of burial (Fig. 4). The southern
high volatile bituminous/medium volatile bituminous east-west
boundary coincides with increasing depth of burial to the north
from the outcrop. The semianthracite rank area coincides closely with
the Hartshorne Formation 1220 m (4000 ft) present-day overburden
contour of Gossling (1994) under Cavanal Mountain in Le Flore
County.

5. Time and cause of coalification

Several theories have been proposed to explain the time and cause
of coalification in the Arkoma Basin. Possible sources of heat include
igneous intrusions, hydrothermal fluids, and maximum depth of
burial. The theories must explain the occurrence of bituminous and
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semianthracite rank coals at the surface in Oklahoma and Arkansas,
respectively, and the west to east increase in coal rank.

Cretaceous igneous intrusions are present in the Ouachita
Mountains, Gulf Coastal Plain, and Mississippi Embayment in
Arkansas (Stone and Sterling, 1964). Houseknecht and Matthews
(1985) attributed a thermal overprint in the eastern Ouachita
Mountains of Arkansas to Mesozoic rifting and intrusive activity in
the Mississippi Embayment; the thermal influence from Mesozoic
intrusions (>2% random vitrinite reflectance, VR, ) extends 50 km (31
mi) and does not reach outcrops of semianthracite-rank Hartshorne
coal west of Russellville, Arkansas. They indicated that, in the western
Ouachita Mountains in Oklahoma (and, by extension, the Arkoma
Basin), sedimentary and tectonic burial was the main control of
thermal maturation of Paleozoic strata. Houseknecht et al. (1992)
indicated that thermal maturity decreases east of the semianthracite
rank Hartshorne coal in Arkansas toward the Mississippi Embayment.
In Arkansas, low volatile bituminous rank coals at the surface between
semianthracite rank coals to the north and Mesozoic igneous
intrusions to the southeast further discounts an influence of igneous
activity on Hartshorne coal rank (Haley, 1982).

Warm fluids emanating from the Ouachita-Arkoma region during
the late Paleozoic have been proposed to explain paleo warm spots in
Pennsylvanian strata of southeastern Kansas (Barker et al., 1992;
Wojcik et al.,, 1994), Mississippi Valley-type (MVT) lead and zinc
deposits of the Ozark Uplift (Appold and Nunn, 2005; Clendenin and
Duane, 1990), and metal enrichments in Pennsylvanian black shales
in the Midcontinent (Coveney, 1992). Several authors favor hydro-
thermal fluid migration as the primary source of the anomalously high
paleo heat flow in the Arkoma Basin (Houseknecht et al., 1992; Nunn
and Lin, 2002; Wojcik et al., 1992). The proposed primary direction of
warm fluid flow is north/northwestward from the Ouachita Moun-
tains, Arkoma Basin, and Reelfoot Rift. Filipek (1992) explained the
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change in deep groundwater flow from northward to westward
directions by the erosion of the Ouachita Mountains and formation of
the Ozark Uplift in Late Pennsylvanian to Early Permian. Challenging
this theory, Lee et al. (1996, p. 25,399) concluded that “present-day
thermal data are generally not supportive of theories which invoke
topographically driven groundwater flow through the Arkoma Basin
in Late Pennsylvanian-Early Permian time (~290 Ma) to explain the
genesis of Mississippi Valley-type lead-zinc deposits and regional
diagenesis in the North American midcontinent.”

Cardott et al. (1986) discounted the effect of burial on Arkoma
Basin coalification primarily because the evidence (e.g., overburden)
was missing (e.g., eroded). Later studies provided evidence of missing
section. Based on apatite fission-track analysis, Arne (1992, p. 392)
concluded that “Paleozoic rocks of the Ouachita Mountain fold belt
and Arkoma Basin of Arkansas were exposed to maximum paleotem-
peratures during late Paleozoic burial, prior to the emplacement of
Cretaceous plutons in the region.” Werner and Griffith (1992) used
thermal modeling to estimate maximum burial depths of <3 to >9 km
(<10,000 to >30,000 ft) in the Arkoma Basin and Ouachita Mountains.
Lee et al. (1996) estimated total erosion of 3 to 7 km (10,000 to
23,000 ft) in the Arkoma Basin based on assumptions pertaining to
measured thermal maturity levels. Byrnes and Lawyer (1999)
estimated 1.5 to 4.6 km (5000 to 15,000 ft) of section has been
removed in the Arkoma Basin. They concluded (p. 23) that, “High
thermal maturities, low porosities, and high shale bulk densities of
nearsurface stratigraphic units indicate significant surface erosion”,
and, “Based on burial and thermal history reconstruction, present-day
increasing maturation from west to east across the basin is primarily
the result of increasing overburden and subsequent surface erosion
from west to east,” and that “thermal influences other than burial,
such as hydrothermal fluid migration up faults, seems to have
influenced thermal maturity by less than 20%.”
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In summary, heat flow data and metal enrichments indicate that
hydrothermal fluids moved out of the Ouachita Mountains, Arkoma
Basin, and Reelfoot Rift along faults, fractures, and permeable strata in
the late Paleozoic but do not explain cooling east and west of the
semianthracite region at the surface in Arkansas because the source of
heating was presumed to be to the east. Other lines of evidence
discussed above support the influence of burial depth to explain the
occurrence and distribution of bituminous and semianthracite rank
coals at the surface. Maximum burial depths during the late Paleozoic
with subsequent uplift and erosion are deduced herein as the primary
source of heat to explain the overall east to west rather than south to
north pattern of Hartshorne decreasing coal rank. Whether primarily
from maximum burial depths or hydrothermal fluids, the timing of
maximum heating was during the late Paleozoic as the result of the
Ouachita orogeny.

6. Oklahoma Arkoma Basin coalbed methane activity

The first seven CBM wells in Oklahoma were completed in 1988 in
the Hartshorne coal in the Arkoma Basin in Haskell County (Figs. 5 and
6). By the end of 1992, at the deadline for the first phase of the United
States Internal Revenue Service Section 29 (IRS §29) tax credit, there
were a total of 104 CBM (including Desmoinesian age Hartshorne,
Lower Hartshorne, Upper Hartshorne, and McAlester coals) wells in
the Arkoma Basin. The first CBM wells completed in the northeast
Oklahoma shelf were in 1994. By the 2002 deadline for the second
phase of the IRS §29 tax credit (Sanderson and Berggren, 1998) there
were a total of 931 CBM wells in the Arkoma Basin. A total of 5869
CBM wells have been completed in the eastern Oklahoma coalfield
(including Arkoma Basin and northeast Oklahoma shelf) from 1988 to
May 2010. The maximum number of CBM wells in Oklahoma
completed in a single year was 353 for the Arkoma Basin and 678
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for the entire coalfield in 2005. A dramatic decrease in CBM activity in
the Oklahoma coalfield occurred during 2009 (total of 109 new wells)
due to a decrease in value of natural gas (Fig. 5).

Fig. 7 shows 2697 CBM well completions in the Arkoma Basin from
1988 through May 2010. Most (2635) wells are in the Hartshorne
coals (Hartshorne, Lower Hartshorne, Upper Hartshorne) and occur
north of the Hartshorne coal-split line. Hartshorne CBM wells that are
south of the coal-split line should be either to the Lower or Upper
Hartshorne coal but were not identified as such by most of the
operators. In some wells both the Upper and Lower Hartshorne coal
beds were perforated (designated as Upper/Lower Hartshorne). Total
vertical depths to the top of the coal in the Hartshorne CBM wells
range from 87 to 1807 m (284 to 5930 ft; average of 589 m [1931 ft]
from 2580 wells reporting coal depth). The shallowest (87 m; 284 ft)
Hartshorne CBM well is one of two coal mine methane (CMM) wells in
Oklahoma. The shallowest (102 m; 334 ft) vertical CBM (non-CMM)
well had an initial potential (IP) gas rate of only 5 thousand cubic feet
per day (Mcfd).

The Hartshorne coal-rank boundaries in Fig. 7 indicate that the
coal rank in most Hartshorne CBM wells is medium volatile
bituminous. Medium volatile bituminous rank corresponds to peak
thermogenic methane generation (Boyer, 1989) and the cross-over
point where gas generation generally exceeds storage capacity (e.g.,
Rice, 1993; Scott et al., 1995). Based on this work, in theory high
volatile bituminous rank coals can store as much gas in the adsorbed
state as the coal can generate, while expulsion of free gas is likely for
low volatile bituminous and semianthracite rank coals. Therefore, it is
assumed that some thermogenic methane generated from low
volatile bituminous and semianthracite rank Hartshorne coals
migrated into the adjacent sandstone thereby reducing the amount
of gas in the coal to the maximum storage capacity. l[annacchione et al.
(1983, p. 17) speculated that, “So much methane was generated in the
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Fig. 9. Horizontal/directional and vertical coalbed methane wells in Oklahoma (1988-2010).

advance stages of coalification (medium- to low-volatile bituminous
coal ranks) that gas migrated from the [Hartshorne] coalbed into the
surrounding sandstones.” Based on gas geochemistry, Rice (1996)
indicated that most of the gas in the Hartshorne sandstone probably
was generated in the adjacent coal beds. Few Hartshorne CBM wells
have been completed in areas with Hartshorne sandstone channels
(Fig. 8). Areas of sandstone channels, often with thin coal of low gas
content, are better prospects for conventional sandstone completions
than for a CBM completion.

Most (1610) Hartshorne CBM wells are horizontal wells with
vertical depths of 127 to 1807 m (417 to 5930 ft; average of 682 m
[2238 ft] based on 1561 horizontal Hartshorne CBM wells reporting
vertical depths; Fig. 9). Hartshorne horizontal CBM well lateral
lengths range from 4 to 1498 m (14 to 4914 ft; average of 669 m
[2195 ft] based on 1555 wells). The earliest Hartshorne horizontal
CBM wells in 1998 had drilling problems staying in thin coal beds
(<1.5 m; <5 ft). Advances in measurement-while-drilling horizontal
wells in the year 1999 shifted new drilling from vertical to horizontal
wells. By 2005, 333 (94%) of 353 new CBM wells in the Arkoma Basin
were horizontal wells. Gas rates in CBM wells are the highest from
days to months into production due to desorption following a drop in
hydrostatic pressure (Schraufnagel, 1993). However, IP gas rates are
readily available whereas estimated ultimate recovery and peak
month data are difficult to obtain. A comparison of IP gas rates for
horizontal and vertical CBM wells in the Arkoma Basin shows that

horizontal wells have higher rates (Fig. 10). IP gas rates of horizontal
CBM wells range from 0 to 65.6 thousand cubic meters per day, Mcmd
(0 to 2316 thousand cubic feet per day, Mcfd) (average of 8.6 Mcmd,
302 Mcfd) at vertical depths of 127 to 1340 m (417 to 4397 ft) from
1513 wells compared to IP gas rates of vertical CBM wells which range
from O to 14.5 Mcmd (0 to 512 Mcfd) (average of 1.4 Mcmd, 50 Mcfd)
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Fig. 10. Scatter plot of initial potential gas rate (Mcfd) vs. depth (feet) for Arkoma Basin
coalbed methane wells (1988-2010).
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Fig. 11. Scatter plot of initial potential gas rate (Mcfd) vs. lateral length for Arkoma
Basin coalbed methane horizontal wells (1998-2010).

at depths of 87 to 1322 m (284 to 4337 ft) from 906 wells. The highest
IP gas rates (>28.3 Mcmd, >1 million cubic feet per day, MMcfd) were
not from the deepest wells. The highest IP gas rate for a vertical CBM
well (14.5 Mcmd, 512 Mcfd) was from a coal-mine-methane well
(Cohort Energy 1-32 Greenwood well in sealed-off portion of GCI
Pollyanna No. 8 active underground coal mine) at a depth of 87 m
(284 ft). The gas composition was diluted by air contamination from a
leak in the seal to the active mine.

Fig. 11 compares IP gas rate with lateral length of Arkoma Basin
horizontal CBM wells. The highest IP gas rates (>28.3 Mcmd, >1
MMcfd) correspond to lateral lengths of about 305 to 915 m (1000 to
3000 ft) instead of to the longest lateral lengths. Many horizontal CBM
wells have a perforated liner that reduces problems from hole
collapse. Even with this precaution, problems are encountered in
horizontal CBM wells with long laterals, primarily from drilling
through faults.
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Fig. 12 illustrates the IP gas rate of horizontal and vertical
Hartshorne-only CBM wells on the coal-rank map. IP gas rates >28.3
Mcmd (>1 MMcfd) are in CBM wells of high volatile bituminous and
medium volatile bituminous rank. All Hartshorne CBM wells of low
volatile bituminous and semianthracite rank had IP gas rates <28.3
Mcmd (<1 MMcfd). Gas rate may be affected by the stimulation and
completion method (e.g., vertical vs. horizontal well; lateral length;
use of perforated liner). However, the lack of IP gas rates >28.3 Mcmd
(>1 MMcfd) in Hartshorne CBM wells of low volatile bituminous and
semianthracite rank in Le Flore County could be due to complications
in drilling high rank coals with close (<1 cm) cleat spacing (Law,
1993; e.g., creation of coal fines that plug permeability), stimulation
differences, or to lower gas contents in areas adjacent to Hartshorne
sandstone channels.

7. Conclusions

Mean maximum vitrinite reflectance values of 0.76% to 2.41% Rpyax
were measured from 70 surface and subsurface Hartshorne coal
(Middle Pennsylvanian) samples from vertical depths of 0 (surface) to
1327 m (4355 ft). The resultant coal-rank map shows rank increasing
from high volatile bituminous to semianthracite from west to east in
the Arkoma Basin in Oklahoma. Rank boundaries are limited by the
availability of coal samples from recent CBM development wells.

It is concluded that Hartshorne coal rank was primarily established
from maximum burial depth during the late Paleozoic followed by
uplift and erosion of up to 4.6 km (15,000 ft) of overburden to the
present. Less of an influence is attributed to hydrothermal fluid flow
away from the Ouachita orogenic belt during the late Paleozoic.

A total of 2635 Hartshorne (Hartshorne, Lower Hartshorne, and
Upper Hartshorne) coalbed methane (CBM) wells have been
completed in Oklahoma from 1988 to May 2010. The coal rank in
most of the Hartshorne CBM wells is medium volatile bituminous. The
Hartshorne coal is semianthracite rank in about 160 CBM wells in Le
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Fig. 12. Initial potential gas rate (Mcfd) of Hartshorne-only coalbed methane wells (1988-2010).



46 B.J. Cardott / International Journal of Coal Geology 108 (2013) 35-46

Flore County. Initial potential (IP) gas rates >28.3 thousand cubic
meters per day, Mcmd (>1 million cubic feet per day, MMcfd) are
from CBM wells with coals of high volatile bituminous and medium
volatile bituminous rank. IP gas rates <28.3 Mcmd (<1 MMcfd) from
CBM wells with coals of low volatile bituminous or semianthracite
rank may be low due to the creation of coal fines while drilling
high-rank coals with close (<1 cm) cleat spacing, to differences in
stimulation practice, or to lower gas contents in areas adjacent to
Hartshorne sandstone channels.
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