

Reservoir Geomechanics Modeling JIP-OU

Ahmad Ghassemi

JIP Objective

- Develop & Apply Modeling Technologies for Reservoir
 Development & Stimulation Design:
 - Completions/Hydraulic fracturing
 - Fracture networks
 - Altered stress & Refrac analysis
 - Wellbore stability
 - DFIT in fractured reservoir
 - Inverse modeling of micro-seismic
 - Advanced rock mechanics testing

Using Rock Mechanics to Enhance Resource Development

Technology Development

• Numerical/Theoretical modeling/Case studies

Technology Transfer

- Developing project-specific solutions
- Student training (and train company personnel to use software)

OU-JIP is the Leader in Hydraulic Fracture Modeling

State-of-the-art modeling

- R3D multiple hydraulic fracture model capable of large-scale simulations
 - Multiple wells and multiple clusters, Rock mechanical anisotropy and toughness anisotropy, including height correction for stress shadow in anisotropic rock
 - Viscous and toughness regimes (first of its kind in the HF modeling community-progress ongoing)
 - Limited entry completions and perforation losses
 - Leak-off, Newtonian and non-Newtonian fluids
 - Pumping schedule, injection/shut-in cycles

Hydraulic Fracture Modeling

- 3D elastic/poroelastic DD hydraulic fracture model for multiple well and multiple clusters
- o Simulated simul- and zipper frac
- o Simulated refrac and parent/child well design
- o Proppant transport
- o 3D HF/NF

Hydraulic Fracture Modeling

Child Well Fracturing before Re-pressurization of "Parent" Well

Natural Fractures & DFIT

- It is likely HF intersects multiple NFs
- The closure behavior becomes complex
- The sequence of closure is reflected on the G-function plot
- Notice in Figure (3) the partial closure of the left NF indicating higher stress shadow on the left wing.

OH max

1

Influences of Layered Modulus (CZM) Young's modulus contrast

Aperture Profile

Fracturing in Layered Systems

P3D model for multi-stage fracturing in anisotropic formations

Effect of Fracture Toughness (K_{IC}=450 psi.inch^{0.5})

Stress Contrast- 350 psi

- Fracture coalescence is not observed in either stress contrast cases.
- When fracture curving is small, outer fracture dominate opening.

Effect of Fracture Toughness (K_{IC}=450 psi.inch^{0.5})

SPE - 194328-MS.

Rapid 3D Multi-frac

- R3D incorporates fracture height growth
- Fracture Mechanics
- Leak-off, viscous, toughness regimes
- Comparison with benchmark solutions
- Realistic stress shadow
- Perforation erosion
- Fast without compromising physics

Capabilities of R3D

Simulation time 10-30 minutes on a desktop

(Excess barrier stress- 145 psi)

50 bpm/stage, toughness=1

200

400

0.0030

0.0024

0.0018

0.0012

0.0006

0.0000

Aperture (m)

-200

€ est

he

'ed in

closer to

(Excess barrier stress- 220 psi)

SPE - 194328-MS

P3D Simulation of Multiple Fracture Strands from a Perforation Cluster-1

Center Fractures

- Segments along vertical- 10
- Total segments-100
- Segment height- 10 ft.
- Spacing 10% of height- 1.0 ft. \triangleright
- ➤ Maximum opening of outer fractures- 0.034 inch .<< conventional</p> single frac model (0.085 inch)
- Maximum opening of inner fractures- 0.015 inch \geq
- Majority fractures have opening less than 50% of outer most fractures
- Predicted fracture half- length is 515 ft.<< conventional single frac \geq model (1050 ft)

Shear Stimulation in 3D Network

- Fracture Permeability Increase
 - fluid injection successfully improves the permeability of interconnected fractures

- Injection Induced seismicity
 - fractures slip in shear and induce micro-earthquakes
 - confirms that the fracture network is successfully stimulated by injection

Wellbore Stability Model Features

- Stable trajectory design using optimum mudweight definition based on the most complete and theoretically robust thermo-chemoporoelastic modeling
- In addition to mud weight, the impact of temperature, and mud chemistry on shale stability as a function of time can be considered
- Drucker-Prager failure criterion

Critical Mud Weight Based on the Elastic Model: (a) Critical Low Mud Weight; (b) Critical High Mud Weight

Mud weight for wells with variable inclination (0-90) and orientation (0-360), 1 hr

Mud weight for wells with variable inclination (0-90) and orientation (0-360), 1 hr

Mud weight for wells with variable inclination (0-90) and orientation (0-360) $c^m = 0.2 \ c^{sh} = 0.1$

Chemo-thermo-poroelastic $T^m = 85 \degree C T^{sh} = 95 \degree C$

Block HF Tests

Test Assembly Procedure -continued

Left: MTS 810; Right: MTS 315

MTS 816 Direct Shear & Triaxial System (Back View)

Triaxial-injection Test with Acoustic Emission

Other Lab Capabilities

- True triaxial cell
- Rock scratch system
- Complete stress-strain curves
- Proppant embedment and consolidation
- Formation elasticity/strength sensitivity to fluids (i.e. chemo-poroelastic and rock weakening effects)
- Advanced poroelastic
- PVC
- Creep testing
- Fracture toughness
- Shear testing of natural fractures and bedding planes
- Testing under temperature up to 200C

Deliverables

Deliverables

- 3D multiple hydraulic fracture modeling (BEM)
- 3D modeling of multiple fractures and re-frac, frac hit analysis
- 3D poroelastic DFIT considering HF/NF
- R3D HF model rapid large-scale completion optimization
- 3D FEM (CZM, Damage, etc.) for height growth
- Model applications to specific cases per request
- Advanced rock mechanics testing
- Student site visit program to help software use

Cost, Schedule

- Platinum membership (\$100K/yr)
 - To attract new members, Platinum membership fee is reduced to \$50K/year for a period of 2-years, and previous years' late fees are reduced to \$100K total.
 - \$100K due upon joining

- Reports on each task/project (approximately every 4 months)
 - If the need to disclose proprietary information arises, a separate confidentiality Agreement will be executed between the parties
 - University grants to each Sponsor a non-exclusive, royalty-free license to use any Invention