Payload Carrying Carbon Fiber 2-Stage Rocket

Team: Ian Elkin, Sawyer Frakes, Bradey Riopelle, Reily Sappington, Wilson Smith Advisor: Dr. Srikanth Bashetty

BOOMER ROCKET TEAM

Background

The Argonia Cup is a high-powered collegiate rocketry competition that challenges students to design, build, and fly a rocket to meet specific objectives within design constraints.

Objectives

Design Constraints

- Must be a 2-stage rocket
- Must carry a golf ball payload
- Must launch with 2, 12 ft "1515" launch rails
- Maximum total impulse of 5120 N•s
- Minimum liftoff thrust-to-weight ratio of

Launch a two-stage rocket with a payload of golf

balls while staying within the constraints of the

successful deployment of recovery systems

Cup, the team further identified objectives based

Score = Apogee_{sustainer} * (n/10+1)

directly on the Argonia Cup's scoring equation:

To achieve a competitive score in the Argonia

Maximum apogee of 45,000 ft AGL

Argonia Cup regulations. This entails:

mid-flight sustainer motor ignition

survival of ground impact

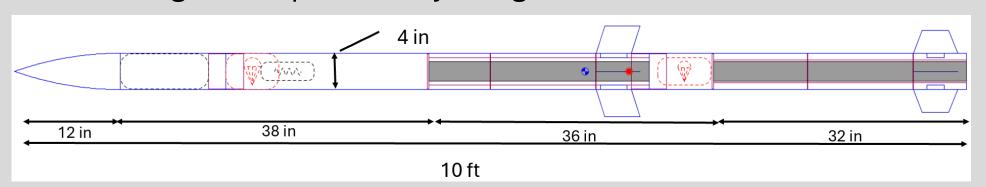
Engineering Standards

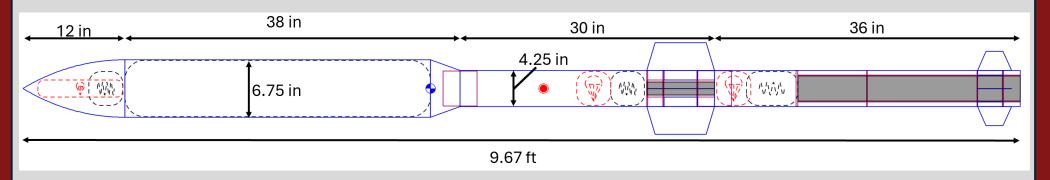
- **Rocket Safety Code**
- be purchased by those holding proper
- and ductile metal when
- The rocket must be

- National Association of Rocketry's High Powered
- Any motors used will only certifications
- The rocket will be made of only lightweight materials, needed.
- equipped with an electrical launch prevention switch

Manufacturing Process

- Our first attempt at manufacturing a carbon fiber tube resulted in the cardboard tube we had used as a *mandrel* (the frame for a carbon fiber layup) adhering to the carbon fiber tube itself
 - While we eventually got the mandrel out of our tube, it was destroyed in the process, so we knew we needed to
- On our following layups, we exchanged the cardboard for a PVC tube that we had sanded and waxed for smoothness.
- This change in the manufacturing process greatly increased the quality of our final
 - Each subsequent layup we worked to further eliminate defects and errors in our
- We also employed a new method of sanding.
- By mixing epoxy with powdered glass microspheres prior to sanding, micro-abrasions on the surface of the tube could be eliminated much
- Resulted in an even smoother finish before we applied the paint

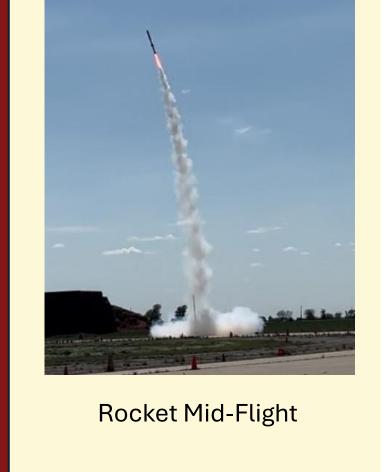



Upgraded PVC mandrel

Design Process

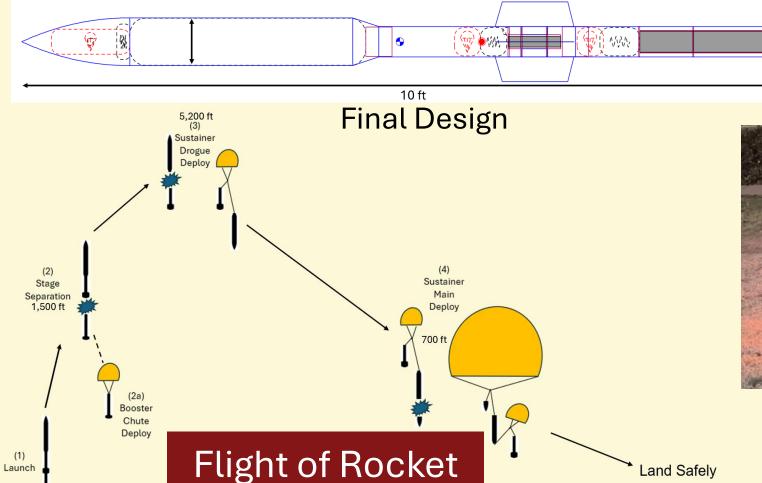
OpenRocket software was used to make and simulate each of the rocket designs. The preliminary design can be seen below.

- Designs included a 4 in body tube for both the booster and sustainer.
- Variation between designs involved sizing of the payload bay.
- Different diameters were first tested to determine the size of the payload bay.



- Due to the use of non-standard mandrels during the manufacturing process, the diameters of the body tubes and the payload bay were bigger than expected.
- We had to manufacture other parts like the centering rings, bulkheads, and nosecone differently due to the non-standard industry body tubes.
- Final payload capacity: 256 golf balls
- Total length: 10 ft
- Booster motor: AeroTech L1420, 4,603 N·s of impulse.
- Sustainer motor: AeroTech H999, 320 N·s of impulse.
- Total impulse: 4,923 N·s.

- Nosecone split in half during first ground test:
- "Main event": stage separation of nosecone from payload


Results

- Solution: carbon fiber wrap around cone to bear high internal pressure during event (black powder charge)
- All other ground tests were successful
- Due to stability issues, "Pointy End Up" was unable to fly in the Argonia Cup competition:
- Final CG of the rocket and its second stage was farther aft than predicted
- Solution: Larger fins on both booster and sustainer
- Additional improvements undertaken:
- Shoulder tabs on nosecone for easier pre-flight assembly
- Redesigned forward bulkhead mount (bears shock of main parachute deployment and inflation)
- The final design of the rocket is shown below
- Expected apogee: 5,250 feet
- Expected score: 133,875 pts

Rocket After Recovery

Ground Test of the "Main Event"

Conclusions and Future Work

Using methods for carbon fiber body tube manufacturing and known procedures for model rocket construction, the Boomer Rocket Team was able to

- Construct a rocket capable of carrying a 256-golf ball payload at an expected altitude of 5250 feet.
- Utilizing the TeleMega flight controller a successful two-stage flight is expected.
- The simulations generated from the OpenRocket program preview a stable rocket.
- Through many different design processes and iterations, a final design was reached that maximized the potential score for the Argonia Cup.
- Future work includes participating in upcoming rocketry competitions that will build on previous designs.

These objectives are:

achieve highest altitude possible

Above: Nose Cone Mold

Below: Payload Bay Tube