Quantum Mechanics Qualifying Exam - January 2013

Notes and Instructions

- There are 6 problems. Attempt them all as partial credit will be given.
- Write your alias on the top of every page of your solutions
- Number each page of your solution with the problem number and page number (e.g. Problem 3, p. 2/4 is the second of four pages for the solution to problem 3.)
- You must show your work to receive full credit.

Possibly useful formulas:

Spin Operator

$$\vec{S} = \frac{\hbar}{2}\vec{\sigma}, \quad \sigma_x = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$
(1)

In spherical coordinates,

$$\nabla^2 \psi = \frac{1}{r} \frac{\partial^2}{\partial r^2} r \psi + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial \psi}{\partial \theta}) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \psi.$$
(2)

Problem 1: Bound States and Scattering for a Delta-Function Well

Consider a delta-fuction for a 1-D system,

$$V(x) = -g \ \delta(x) \tag{1}$$

where g > 0. We will consider the states of a particle of mass m interacting with this potential for both E < 0 and E > 0.

This potential has a single bound state $E_b < 0$.

- (a) [1 pt] Explain why the bound state wavefunction for the particle will have the form $\Psi(x) = ce^{-|x|/\lambda}$. (You don't need to solve for anything to answer this question.)
- (b) [2 pts] Derive the boundary conditions for $\Psi(x)$ and $\partial_x \Psi(x)$ at x = 0.
- (c) [1 pt] Using the boundary conditions at x = 0, determine the value of λ .
- (d) [1 pts] What is the energy of the bound state, E_b ? What is the normalization constant c?
- (e) [2 pts] What is the uncertainty in position, Δx for the particle in this bound state?
- (f) [2 pts] Next consider a scattering state for this particle with energy E > 0

$$\Psi(x) = e^{ikx} + ae^{-ikx}, \quad x < 0$$

= $be^{ikx}, \quad x > 0$ (2)

For this state, $E = \frac{\hbar^2 k^2}{2m}$

Using the boundary conditions you found in part (b), determine a and b, and the transmission and reflection coefficients for this scattering state.

Problem 2: Born Approximation

In the Born approximation, the scattering amplitude for a particle of mass m elastically scattering from a potential $V(\vec{r})$ is given by

$$f(\theta,\phi) \simeq -\frac{m}{2\pi\hbar^2} \int e^{i(\vec{k}-\vec{k}')\cdot\vec{r}} V(\vec{r}) d^3r \tag{1}$$

and where $\hbar \vec{k}$ is the incoming momentum, $\hbar \vec{k}'$ is outgoing momentum, θ is the scattering angle measured from the incoming momentum, and ϕ is an azimuthal angle about the incoming momentum.

The scattering cross section is given by

$$\frac{d\sigma}{d\Omega} = |f(\theta, \phi)|^2.$$
(2)

- (a) [2 pts] Define $\vec{\kappa} \equiv \vec{k'} \vec{k}$. Show that the magnitude $|\vec{\kappa}| = 2k\sin(\theta/2)$ for elastic scattering.
- (b) [6 pts] Find $\frac{d\sigma}{d\Omega}$ for the Yukawa potential: $V(r)=\beta \frac{e^{-\mu r}}{r}$
- (c) [2 pts] Why does the cross section get larger as μ gets smaller? What is the scattering cross section the limit as $\mu \to 0$? What physical problem does this correspond to in the $\mu \to 0$ limit?

Problem 3: Spin Measurements and Uncertainty

Define the operator $S_{\alpha} = \vec{S} \cdot \hat{n}_{\alpha}$ where \vec{S} is the vector spin operator and \hat{n}_{α} is a unit vector in the x - z plane that makes an angle α with the z-axis. So $\hat{n}_{\alpha} = \hat{z}$ for $\alpha = 0$ and $\hat{n}_{\alpha} = \hat{x}$ for $\alpha = \pi/2$.

Consider a spin 1/2 system initially prepared to be in the eigenstate of S_{α} with eigenvalue $+\hbar/2$,

$$S_{\alpha}|\alpha,+\rangle = \frac{\hbar}{2}|\alpha,+\rangle \tag{1}$$

- (a) [3 pts] Compute the eigenstates of S_{α} in the basis of the S_z operator, $|0, \pm\rangle \equiv |\pm\rangle$.
- (b) [2 pts] If the spin is in the state $|\alpha, +\rangle$ and S_x is measured, what is the probability of measuring $-\hbar/2$?
- (c) [3 pts] Compute the expectation value $\langle (\delta S_x)^2 \rangle$ for the state $|\alpha, +\rangle$, where $\delta S_x = S_x \langle S_x \rangle$.

If one measures S_x , what are the values of α that minimize the uncertainty of the measurement for the state $|\alpha, +\rangle$? Interpret the physical meaning of those states.

(d) [2 pts] Finally, define $\mathcal{P}_{x,+}$ to be the projection operator for the spin 1/2 state of S_x , $|\pi/2,+\rangle$. Compute the matrix element $\mathcal{P}_{x,+}$ in the initial state, $\langle +, \alpha | \mathcal{P}_{x,+} | \alpha, + \rangle$. Explain the behavior of the resultant expression as a function of the angle α .

Problem 4: Operator Solutions to the Harmonic Oscillator

Consider the Harmonic Oscillator Hamiltonian in one dimension:

$$H_{ho} = \frac{P^2}{2m} + \frac{m\omega^2}{2}X^2 \tag{1}$$

To simplify this problem, define the new observables:

$$p = \sqrt{\frac{1}{m\hbar\omega}}P$$
, $q = \sqrt{\frac{m\omega}{\hbar}}X$ (2)

This gives the dimensionless Hamiltonian,

$$H = \frac{1}{\hbar\omega} H_{ho} = \frac{1}{2} \left(p^2 + q^2 \right) \tag{3}$$

- (a) [1 pt] Calculate the commutation relation for these new variables, [q, p]. Be sure to show your work.
- (b) [1 pt] Define the non-Hermitian operators $a = \frac{1}{\sqrt{2}}(q+ip)$, $a^{\dagger} = \frac{1}{\sqrt{2}}(q-ip)$ and the Hermitian operator $n = a^{\dagger}a$. Compute $[a, a^{\dagger}]$, $[n, a^{\dagger}]$, and [n, a]
- (c) [1 pt] Write the dimensionless Hamiltonian H in terms of a and a^{\dagger} . Write the dimensionless Hamiltonian H in terms of n.
- (d) [3 pts] Define the eigenvalues and eigenvectors of n as:

$$n|\lambda\rangle = \lambda|\lambda\rangle. \tag{4}$$

and assume that these eigenvectors form a complete set. Show that

$$\begin{aligned} a^{\dagger}|\lambda\rangle &= A|\lambda+1\rangle \\ a|\lambda\rangle &= B|\lambda-1\rangle \end{aligned}$$
 (5)

Determine the normalization constants A and B.

- (e) [2 pts.] Show that $n = a^{\dagger}a$ must have non-negative eigenvalues, $\lambda \ge 0$. Explain why this implies that there must be a state where $a|0\rangle = 0$ and that the eigenvalues of n must be non-negative integers.
- (f) [2 pts.] Write the definition for the state $|0\rangle$

$$a|0\rangle = 0 \tag{6}$$

as a differential equation, in q, for the ground state wavefunction of H. Solve this expression for the normalized ground state wavefunction.

Problem 5: Perturbing a Square Well

Consider a particle of mass m in a 1D infinite square well of width a,

$$V(x) = 0, \quad 0 \le x \le a \qquad V(x) = \infty, \quad x < 0, \quad x > a.$$
 (1)

- (a) [2 pts] Derive the eigenfunctions and eigenenergies of the particle in this potential. Be sure to normalize the states.
- (b) [2 pts] Show that if the well is perturbed by a potential $V'(x) = \alpha x$, the energy of all the unperturbed states shift by the same amount to first order in α . Find an expression for this energy shift. Give a physical explanation for why this perturbation results in an equal first-order energy shift for all states.
- (c) [3 pts] Next, instead of the perturbing potential from part (b), the well is perturbed by a potential

$$V'(x) = V_0, \quad \frac{a}{2} - \delta \le x \le \frac{a}{2} + \delta \qquad V'(x) = 0, \quad x < \frac{a}{2} - \delta, \quad x > \frac{a}{2} + \delta \qquad (2)$$

Compute the energy shift to first order in α for the unperturbed energy eigenstates $\psi_n(x)$. Explain the limit of this result as n, the unperturbed energy level, gets large.

- (d) [2 pts.] What is the energy shift of the states $\psi_n(x)$ to first order in δ as $\delta \to 0$? (V_0 is constant.) Give a physical explanation of this result. Note: You should be able to answer this question even if you did not get a solution to part (c).
- (e) [1 pt] What is the energy shift of the states $\psi_n(x)$ as $\delta \to \frac{a}{2}$? (V_0 is constant.) Give a physical explanation of this result. Note: You should again be able to answer this question even if you did not get a solution to part (c).

Problem 6: Spherical Square Well

Consider a spin 0 particle of mass m moving in a 3D square well, given by the potential

$$V(\vec{r}) = -V_0 \quad 0 \le |\vec{r}| \le a_0 , \quad V(\vec{r}) = 0 \quad |\vec{r}| > a_0 \quad (V_0 > 0).$$
(1)

In this problem we will only consider the bound states of this well, so that $-V_0 < E < 0$.

(a) [1 pt] Explain why we can write the eigenstates of this potential as

$$\Psi_{k,l,m} = f_{k,l}(r)Y_l^m(\theta,\phi).$$
⁽²⁾

- (b) [2 pts] Defining the function $u_{k,l}(r) = rf_{k,l}(r)$, write the radial Schrödinger equation for $u_{k,l}(r)$.
- (c) [2 pts] For l = 0, write the form for the function $u_{k,0}(r)$ in the regions $0 \le r \le a_0$ and $r \ge a_0$. Define any constants that you use.
- (d) [3 pts] Using the boundary conditions on the function $u_{k,0}(r)$, derive an equation that gives the bound state energies for the l = 0 states. Hint: Considering that f(r) = u(r)/r, what is the boundary condition on u as $r \to 0$?
- (e) [2 pts] For a fixed radius for the potential, a_0 , calculate the minimum depth, $V_0 = V_{min}$, for the potential to have a bound state.