Quantum Mechanics
Qualifying Exam - January 2013
Notes and Instructions

- There are 6 problems. Attempt them all as partial credit will be given.
- Write your alias on the top of every page of your solutions
- Number each page of your solution with the problem number and page number (e.g. Problem 3, p. 2/4 is the second of four pages for the solution to problem 3.)
- You must show your work to receive full credit.

Possibly useful formulas:

Spin Operator

$$
\vec{S}=\frac{\hbar}{2} \vec{\sigma}, \quad \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

In spherical coordinates,

$$
\begin{equation*}
\nabla^{2} \psi=\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r \psi+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \psi \tag{2}
\end{equation*}
$$

Problem 1: Bound States and Scattering for a Delta-Function Well

Consider a delta-fuction for a 1-D system,

$$
\begin{equation*}
V(x)=-g \delta(x) \tag{1}
\end{equation*}
$$

where $g>0$. We will consider the states of a particle of mass m interacting with this potential for both $E<0$ and $E>0$.

This potential has a single bound state $E_{b}<0$.
(a) [1 pt] Explain why the bound state wavefunction for the particle will have the form $\Psi(x)=c e^{-|x| / \lambda}$. (You don't need to solve for anything to answer this question.)
(b) [2 pts] Derive the boundary conditions for $\Psi(x)$ and $\partial_{x} \Psi(x)$ at $x=0$.
(c) $[1 \mathrm{pt}]$ Using the boundary conditions at $x=0$, determine the value of λ.
(d) [1 pts] What is the energy of the bound state, E_{b} ? What is the normalization constant c ?
(e) [2 pts$]$ What is the uncertainty in position, Δx for the particle in this bound state?
(f) $[2 \mathrm{pts}]$ Next consider a scattering state for this particle with energy $E>0$

$$
\begin{align*}
\Psi(x) & =e^{i k x}+a e^{-i k x}, \quad x<0 \\
& =b e^{i k x}, \quad x>0 \tag{2}
\end{align*}
$$

For this state, $E=\frac{\hbar^{2} k^{2}}{2 m}$
Using the boundary conditions you found in part (b), determine a and b, and the transmission and reflection coefficients for this scattering state.

Problem 2: Born Approximation

In the Born approximation, the scattering amplitude for a particle of mass m elastically scattering from a potential $V(\vec{r})$ is given by

$$
\begin{equation*}
f(\theta, \phi) \simeq-\frac{m}{2 \pi \hbar^{2}} \int e^{i\left(\vec{k}-\vec{k}^{\prime}\right) \cdot \vec{r}} V(\vec{r}) d^{3} r \tag{1}
\end{equation*}
$$

and where $\hbar \vec{k}$ is the incoming momentum, $\hbar \vec{k}^{\prime}$ is outgoing momentum, θ is the scattering angle measured from the incoming momentum, and ϕ is an azimuthal angle about the incoming momentum.

The scattering cross section is given by

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=|f(\theta, \phi)|^{2} \tag{2}
\end{equation*}
$$

(a) [2 pts] Define $\vec{\kappa} \equiv \vec{k}^{\prime}-\vec{k}$. Show that the magnitude $|\vec{k}|=2 k \sin (\theta / 2)$ for elastic scattering.
(b) $[6 \mathrm{pts}]$ Find $\frac{d \sigma}{d \Omega}$ for the Yukawa potential: $V(r)=\beta \frac{e^{-\mu r}}{r}$
(c) [2 pts] Why does the cross section get larger as μ gets smaller? What is the scattering cross section the limit as $\mu \rightarrow 0$? What physical problem does this correspond to in the $\mu \rightarrow 0$ limit?

Problem 3: Spin Measurements and Uncertainty

Define the operator $S_{\alpha}=\vec{S} \cdot \hat{n}_{\alpha}$ where \vec{S} is the vector spin operator and \hat{n}_{α} is a unit vector in the $x-z$ plane that makes an angle α with the z-axis. So $\hat{n}_{\alpha}=\hat{z}$ for $\alpha=0$ and $\hat{n}_{\alpha}=\hat{x}$ for $\alpha=\pi / 2$.

Consider a spin $1 / 2$ system initially prepared to be in the eigenstate of S_{α} with eigenvalue $+\hbar / 2$,

$$
\begin{equation*}
S_{\alpha}|\alpha,+\rangle=\frac{\hbar}{2}|\alpha,+\rangle \tag{1}
\end{equation*}
$$

(a) [3 pts] Compute the eigenstates of S_{α} in the basis of the S_{z} operator, $|0, \pm\rangle \equiv| \pm\rangle$.
(b) [2 pts] If the spin is in the state $|\alpha,+\rangle$ and S_{x} is measured, what is the probability of measuring $-\hbar / 2$?
(c) [3 pts] Compute the expectation value $\left\langle\left(\delta S_{x}\right)^{2}\right\rangle$ for the state $|\alpha,+\rangle$, where $\delta S_{x}=$ $S_{x}-\left\langle S_{x}\right\rangle$.
If one measures S_{x}, what are the values of α that minimize the uncertainty of the measurement for the state $|\alpha,+\rangle$? Interpret the physical meaning of those states.
(d) [2 pts] Finally, define $\mathcal{P}_{x,+}$ to be the projection operator for the spin $1 / 2$ state of $S_{x},|\pi / 2,+\rangle$. Compute the matrix element $\mathcal{P}_{x,+}$ in the initial state, $\langle+, \alpha| \mathcal{P}_{x,+}|\alpha,+\rangle$. Explain the behavior of the resultant expression as a function of the angle α.

Problem 4: Operator Solutions to the Harmonic Oscillator

Consider the Harmonic Oscillator Hamiltonian in one dimension:

$$
\begin{equation*}
H_{h o}=\frac{P^{2}}{2 m}+\frac{m \omega^{2}}{2} X^{2} \tag{1}
\end{equation*}
$$

To simplify this problem, define the new observables:

$$
\begin{equation*}
p=\sqrt{\frac{1}{m \hbar \omega}} P, \quad q=\sqrt{\frac{m \omega}{\hbar}} X \tag{2}
\end{equation*}
$$

This gives the dimensionless Hamiltonian,

$$
\begin{equation*}
H=\frac{1}{\hbar \omega} H_{h o}=\frac{1}{2}\left(p^{2}+q^{2}\right) \tag{3}
\end{equation*}
$$

(a) $[1 \mathrm{pt}]$ Calculate the commutation relation for these new variables, $[q, p]$. Be sure to show your work.
(b) $[1 \mathrm{pt}]$ Define the non-Hermitian operators $a=\frac{1}{\sqrt{2}}(q+i p), \quad a^{\dagger}=\frac{1}{\sqrt{2}}(q-i p)$ and the Hermitian operator $n=a^{\dagger} a$. Compute $\left[a, a^{\dagger}\right],\left[n, a^{\dagger}\right]$, and $[n, a]$
(c) $[1 \mathrm{pt}]$ Write the dimensionless Hamiltonian H in terms of a and a^{\dagger}. Write the dimensionless Hamiltonian H in terms of n.
(d) [3 pts] Define the eigenvalues and eigenvectors of n as:

$$
\begin{equation*}
n|\lambda\rangle=\lambda|\lambda\rangle . \tag{4}
\end{equation*}
$$

and assume that these eigenvectors form a complete set.
Show that

$$
\begin{align*}
a^{\dagger}|\lambda\rangle & =A|\lambda+1\rangle \\
a|\lambda\rangle & =B|\lambda-1\rangle \tag{5}
\end{align*}
$$

Determine the normalization constants A and B.
(e) [2 pts.] Show that $n=a^{\dagger} a$ must have non-negative eigenvalues, $\lambda \geq 0$. Explain why this implies that there must be a state where $a|0\rangle=0$ and that the eigenvalues of n must be non-negative integers.
(f) [2 pts.] Write the definition for the state $|0\rangle$

$$
\begin{equation*}
a|0\rangle=0 \tag{6}
\end{equation*}
$$

as a differential equation, in q, for the ground state wavefunction of H. Solve this expression for the normalized ground state wavefunction.

Problem 5: Perturbing a Square Well

Consider a particle of mass m in a 1D infinite square well of width a,

$$
\begin{equation*}
V(x)=0, \quad 0 \leq x \leq a \quad V(x)=\infty, \quad x<0, \quad x>a . \tag{1}
\end{equation*}
$$

(a) [2 pts] Derive the eigenfunctions and eigenenergies of the particle in this potential. Be sure to normalize the states.
(b) [2 pts] Show that if the well is perturbed by a potential $V^{\prime}(x)=\alpha x$, the energy of all the unperturbed states shift by the same amount to first order in α. Find an expression for this energy shift. Give a physical explanation for why this perturbation results in an equal first-order energy shift for all states.
(c) [3 pts] Next, instead of the perturbing potential from part (b), the well is perturbed by a potential

$$
\begin{equation*}
V^{\prime}(x)=V_{0}, \quad \frac{a}{2}-\delta \leq x \leq \frac{a}{2}+\delta \quad V^{\prime}(x)=0, \quad x<\frac{a}{2}-\delta, \quad x>\frac{a}{2}+\delta \tag{2}
\end{equation*}
$$

Compute the energy shift to first order in α for the unperturbed energy eigenstates $\psi_{n}(x)$. Explain the limit of this result as n, the unperturbed energy level, gets large.
(d) [2 pts.] What is the energy shift of the states $\psi_{n}(x)$ to first order in δ as $\delta \rightarrow 0$? $\left(V_{0}\right.$ is constant.) Give a physical explanation of this result. Note: You should be able to answer this question even if you did not get a solution to part (c).
(e) [1 pt] What is the energy shift of the states $\psi_{n}(x)$ as $\delta \rightarrow \frac{a}{2}$? (V_{0} is constant.) Give a physical explanation of this result. Note: You should again be able to answer this question even if you did not get a solution to part (c).

Problem 6: Spherical Square Well

Consider a spin 0 particle of mass m moving in a 3D square well, given by the potential

$$
\begin{equation*}
V(\vec{r})=-V_{0} \quad 0 \leq|\vec{r}| \leq a_{0}, \quad V(\vec{r})=0 \quad|\vec{r}|>a_{0} \quad\left(V_{0}>0\right) \tag{1}
\end{equation*}
$$

In this problem we will only consider the bound states of this well, so that $-V_{0}<E<0$.
(a) $[1 \mathrm{pt}]$ Explain why we can write the eigenstates of this potential as

$$
\begin{equation*}
\Psi_{k, l, m}=f_{k, l}(r) Y_{l}^{m}(\theta, \phi) . \tag{2}
\end{equation*}
$$

(b) [2 pts] Defining the function $u_{k, l}(r)=r f_{k, l}(r)$, write the radial Schrödinger equation for $u_{k, l}(r)$.
(c) [2 pts] For $l=0$, write the form for the function $u_{k, 0}(r)$ in the regions $0 \leq r \leq a_{0}$ and $r \geq a_{0}$. Define any constants that you use.
(d) [3 pts] Using the boundary conditions on the function $u_{k, 0}(r)$, derive an equation that gives the bound state energies for the $l=0$ states. Hint: Considering that $f(r)=u(r) / r$, what is the boundary condition on u as $r \rightarrow 0$?
(e) $[2 \mathrm{pts}]$ For a fixed radius for the potential, a_{0}, calculate the minimum depth, $V_{0}=V_{\text {min }}$, for the potential to have a bound state.

