Quantum Mechanics Qualifying Exam-January 2010

Notes and Instructions:

- There are $\mathbf{6}$ problems and $\mathbf{7}$ pages.
- Be sure to write your alias at the top of every page.
- Number each page with the problem number, and page number of your solution (e.g. "Problem 3, p. 1/4" is the first page of a four page solution to problem 3).
- You must show all your work.

Possibly useful formulas:
Pauli spin matrices:

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

One-dimensional simple harmonic oscillator operators:

$$
\begin{aligned}
X & =\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{\dagger}\right) \\
P & =-i \sqrt{\frac{\hbar m \omega}{2}}\left(a-a^{\dagger}\right)
\end{aligned}
$$

Spherical Harmonics:

$$
\begin{array}{ll}
Y_{0}^{0}(\theta, \varphi)=\frac{1}{\sqrt{4 \pi}} & Y_{2}^{2}(\theta, \varphi)=\frac{5}{\sqrt{96 \pi}} 3 \sin ^{2} \theta e^{2 i \varphi} \\
& Y_{2}^{1}(\theta, \varphi)=-\frac{5}{\sqrt{24 \pi}} 3 \sin \theta \cos \theta e^{i \varphi} \\
Y_{1}^{1}(\theta, \varphi)=-\frac{3}{\sqrt{8 \pi}} \sin \theta e^{i \varphi} & Y_{2}^{0}(\theta, \varphi)=\frac{5}{\sqrt{4 \pi}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right) \\
Y_{1}^{0}(\theta, \varphi)=\frac{3}{\sqrt{4 \pi}} \cos \theta & Y_{2}^{-1}(\theta, \varphi)=\frac{5}{\sqrt{24 \pi}} 3 \sin \theta \cos \theta e^{-i \varphi} \\
Y_{1}^{-1}(\theta, \varphi)=\frac{3}{\sqrt{8 \pi}} \sin \theta e^{-i \varphi} & Y_{2}^{-2}(\theta, \varphi)=\frac{5}{\sqrt{96 \pi}} 3 \sin ^{2} \theta e^{-2 i \varphi}
\end{array}
$$

Angular momentum raising and lowering operators:

$$
\hat{L}_{ \pm}=\left(\hat{L}_{x} \pm i \hat{L}_{y}\right)
$$

PROBLEM 1: The Delta-Function Potential

Let us consider a single particle of mass m moving in one dimension with the Hamiltonian

$$
H=T+V(x),
$$

where the kinetic energy is

$$
T=\frac{P^{2}}{2 m}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}},
$$

the potential energy is

$$
V(x)=-V_{0} \delta(x),
$$

and $\delta(x)$ is the Dirac delta function.
(a) [2 points] Find an expression for the discontinuity of the derivative of the wave function at $x=0$.
(b) [3 points] Find the ground state wave function.
(c) [2 points] Find the ground state energy.
(d) [3 points] Find the expectation value for the kinetic energy, $\langle T\rangle$.

PROBLEM 2: Hydrogenic Atoms with One Electron

In terms of the first Bohr radius, $a_{0} \equiv \hbar /\left(c \alpha m_{e}\right)$, where α is the fine-structure constant, the ground-state eigenfunction of a hydrogen atom is

$$
\psi_{1,0,0}(r, \theta, \varphi)=\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{-r / a_{0}}
$$

(a) [3 points] Evaluate the probability of finding an electron in the ground-state of a hydrogen atom in the classically forbidden region. The classically forbidden region is the region of space where the classical kinetic energy is negative.
(b) [4 points] For the ground state, evaluate the uncertainty in the Cartesian coordinate x and the uncertainty in the corresponding component of the linear momentum, p_{x}. Hint: You need not use the explicit form of the operator for the linear momentum to evaluate Δp_{x}.
(c) [3 points] Show explicitly that the product of your uncertainties, $\Delta x \Delta p_{x}$, is consistent with the Heisenberg uncertainty principle.

PROBLEM 3: Time-Dependent Perturbation Theory

Consider a non-relativistic particle of mass m and charge q with the potential energy:

$$
V(x)=\frac{1}{2} k X^{2}
$$

A homogeneous electric field $\mathcal{E}(t)$ directed along the x-axis is switched on at time $t=0$. This causes a perturbation of the form

$$
H^{\prime}=-q X \mathcal{E}(t)
$$

where $\mathcal{E}(t)$ has the form

$$
\mathcal{E}(t)=\mathcal{E}_{o} e^{-t / \tau}
$$

where \mathcal{E}_{o} and τ are constants.
The particle is in the ground state at time $t \leq 0$. This problem will deal with calculating the probability that it will be found in an excited state as $t \rightarrow \infty$.

The probability that the particle makes a transition from an initial state i to a final state f is given by:

$$
\left.P_{f i}\left(t, t_{o}\right)=\frac{1}{\hbar^{2}}\left|\int_{t_{o}}^{t} d t^{\prime}\left\langle\phi_{f}\right| H^{\prime}\left(t^{\prime}\right)\right| \phi_{i}\right\rangle\left. e^{i \omega_{f i} t^{\prime}}\right|^{2} .
$$

where the particle originally is in state ϕ_{i} and finally in state ϕ_{f}.
(a) [2 points] In terms of known quantities, what is the value of $\omega_{f i}$?
(b) [2 points] How many excited states can the particle make a transition to?
(c) [6 points] Derive an expression for the probability that the particle will be found in any allowed excited state as $t \rightarrow \infty$.

PROBLEM 4: Spin Physics

Spin-1/2 objects generally have magnetic moments that affect their energy levels and dynamics in magnetic fields. The interaction between the magnetic moment and a magnetic field, \vec{B} can be written as:

$$
\begin{equation*}
H=-\mu \vec{S} \cdot \vec{B} \tag{1}
\end{equation*}
$$

where \vec{S} is the spin of the particle

$$
\begin{equation*}
\vec{S}=\frac{\hbar}{2} \vec{\sigma} \tag{2}
\end{equation*}
$$

where the σ_{i} 's are Pauli matrices.
In this problem we'll be using as our basis the eigenstates of S_{z},
with eigenvalues $\pm \frac{\hbar}{2}$.
(a) [1 point] If a particle is in the spin state $|+\rangle$, compute the expectation values of S_{x}, S_{y}, and S_{z}.
(b) $[1$ point $]$ If a particle is in the spin state $|+\rangle$, what are the uncertainties of S_{x}, S_{y}, and S_{z} ? $\left(\Delta S_{i}^{2}=\left\langle S_{i}^{2}\right\rangle-\left\langle S_{i}\right\rangle^{2}\right.$.) Explain the physics of your results in terms of the eigenvalues and measurement probabilities of the spin in the x, y, and z directions.
(c) [3 points] A large ensemble of particles are all prepared to be in the spin state $|+\rangle$ at time $t=0$ when a magnetic field in the x-direction is switched on, $\vec{B}=B_{0} \hat{e}_{x}$. Solve for the time-dependent probabilities, $P_{ \pm}(t)$, of measuring S_{z} to be $\pm \hbar / 2$.
(d) [2 points] For the experiment described in part (c), what are the probabilities for measuring S_{x} to be $\pm \hbar / 2$? Explain the differences between the results for S_{z} and S_{x}.
(e) [3 points] Consider the case where the magnetic field is $\vec{B}=\frac{B_{0}}{\sqrt{2}}\left(\hat{e}_{x}+\hat{e}_{z}\right)$. In this case what is the time-dependent probability of measuring S_{z} to be $+\hbar / 2$?

PROBLEM 5: Two Level System

Consider a quantum system that can be accurately approximated as having two energy levels $|+\rangle$ and $|-\rangle$ such that

$$
H_{0}| \pm\rangle= \pm \epsilon| \pm\rangle
$$

where ϵ is energy.
When placed in an external field, the eigenstates of H_{0} are mixed by another term in the total Hamiltonian

$$
V| \pm\rangle=\delta|\mp\rangle
$$

For simplicity, we choose ϵ to be real.
(a) [1 points] Using the states $|+\rangle$ and $|-\rangle$ as your basis states, write down the matrix representations for the operators H_{0} and V.
(b) [3 points] What will be the possible results if a measurement is made of the energy for the full Hamiltonian $H=H_{0}+V$?
(c) [2 points] Experiments are performed that measure the transition energies between eigenstates. Without the external field $(\delta=0)$ it is found that the transition energy is 4 eV and with the external field $(\delta \neq 0)$ the transition energy is 6 eV . What is the coupling between the states $| \pm\rangle, \delta$, in this case?
(d) [2 points] We can write the eigenstates of the total Hamiltonian in terms of two energy levels $| \pm\rangle$ as

$$
\begin{aligned}
& |1\rangle=\cos \left(\theta_{1}\right)|+\rangle+\sin \left(\theta_{1}\right)|-\rangle \\
& |2\rangle=\cos \left(\theta_{2}\right)|+\rangle+\sin \left(\theta_{2}\right)|-\rangle .
\end{aligned}
$$

Letting $\delta / \epsilon=C$, solve for the angles θ_{1} and θ_{2} in terms of C.
(e) [2 points] Consider an experiment where the two-level system starts in the eigenstate of H_{0} with eigenvalue $-\epsilon$. A very weak field is turned on so that $C \ll 1$. To the lowest order in C, what is the probability of measuring a positive energy for the system when $\delta \neq 0$?

PROBLEM 6: Hyperfine Splitting

The hyperfine splitting in hydrogen comes from a spin-spin interaction between the electron and the proton. The total Hamiltonian can be written as

$$
H=\frac{P_{p}^{2}}{2 m_{p}}+\frac{P_{e}^{2}}{2 m_{e}}-\frac{e^{2}}{r}+H_{H F}
$$

where $H_{H F}=A \vec{S}_{e} \cdot \vec{S}_{p}$, and A is a real constant.
(a) [1 points] What are the spin quantum numbers s and m_{s} of the electron?
(b) [1 points] What are the spin quantum numbers s and m_{s} of the proton?
(c) [1 points] What are the spin quantum numbers s and m_{s} of the combined electron-proton system?
(d) [5 points] Diagonalize $H_{H F}$ in the total $\vec{S}=\vec{S}_{e}+\vec{S}_{p}$ basis and compute the energy eigenvalues.
(e) [2 points] Write an expression for the energy of a photon that would be emitted from a hyperfine transition in terms of A, \hbar, and any other relevant constants.

