QUANTUM QUALIFIER EXAM, JANUARY 2007

PROBLEM 1

Consider the step potential shown in the figure.
a) [1 pts] Consider a particle traveling from $x=-\infty$ to the right with an energy E. The appropriate wavefunction for this particle is given by

$$
\phi= \begin{cases}e^{i k_{L} x}+A e^{-i k_{L} x} & \text { for } x<0 \\ B e^{i k_{R} x} & \text { for } x>0\end{cases}
$$

Give expressions for k_{L} and k_{R} and define any undefined parameters/constants given in your expression.
b) [3 pts] For the case that $E>V_{o}$, use appropriate boundary conditions to find the coefficients A and B.
c) [2 pts] For the case that $E>V_{o}$, find the probability that the particle will be reflected.
d) $[2 \mathrm{pts}]$ For the case that $E>V_{o}$, the probability that the particle will be transmitted is given by $T=1-R$. Determine and explain the physical meaning of the ratio $|B|^{2} / T$.
e) [2 pts] What is the probability for reflection when $E<V_{o}$?

PROBLEM 2

a) [2 pts] Calculate the energy eigenvalues for a particle of mass m in the one-dimensional infinite well shown in Figure A.
b) [4 pts] For the time-independent Schrödinger Equation corresponding to potential (B), find a transcendental equation in E giving the eigenenergies in terms of V_{o}, L, m, and \hbar
c) [4 pts] For the time-independent Schrödinger Equation corresponding to potential (B), what is the smallest value of V_{o} that gives one bound state? What is the smallest value of V_{o} that gives two bound states?

PROBLEM 3

Consider a quantum mechanical system that consists of two identical spin $1 / 2$ particles that are fixed in space, separated by a distance d. Particle 1 is at the origin $\left(\vec{r}_{1}=\overrightarrow{0}\right)$ whereas particle 2 is at $\vec{r}_{2}=d \hat{e}_{z}$. Each particle has a magnetic moment

$$
\vec{\mu}(j)=\frac{g \mu_{o}}{\hbar} \vec{S}(j), \quad j=1,2
$$

and a g-factor $g=2$. $\vec{S}(j)$ is the spin operator of the $j^{t h}$ particle. Throughout this problem we will use the basis states $|1\rangle=|+,+\rangle,|2\rangle=|+,-\rangle,|3\rangle=|-,+\rangle$, and $|4\rangle=|-,-\rangle$, where these are the usual states written in terms of the z-components of the particles' spins.
a) [2pts] First consider what happens if we place the particles in an external magnetic field $\vec{B}=B \hat{e}_{z}$. Write the matrix representation for the Hamiltonian of the system $H_{o}=-\vec{\mu} \cdot \vec{B}$ in the $|i\rangle, i=1,2,3,4$ basis given above, considering only the interaction between the spins and the magnetic field. What are the energy eigenstates and eigenvalues for the system? Draw an energy-level diagram.
b) [3pts] We know, however, that the magnetic moment of each particle will create a magnetic field that the other particle will feel. The dipole field from particle 1 at particle 2 is (classically)

$$
\vec{B}_{21}=\frac{1}{d^{3}}\left(3 \mu_{z}(1) \hat{e}_{z}-\vec{\mu}(1)\right)
$$

so that the interaction Hamiltonian between the two particles is

$$
\begin{aligned}
\hat{H}^{\prime} & =-\vec{\mu}_{2} \cdot \vec{B}_{21} \\
& =\frac{g^{2} \mu_{o}^{2}}{\hbar^{2} d^{3}}\left(-3 S_{z}(1) S_{z}(2)+\vec{S}(1) \cdot \vec{S}(2)\right)
\end{aligned}
$$

Compute the action of the interaction Hamiltonian on each of the basis states. In other words, calculate $\hat{H}^{\prime} \mid i>$ for $i=1,2,3,4$.
Hint: Use the usual angular momentum raising and lowering operators

$$
\hat{S}^{ \pm}=\hat{S}_{x}(j) \pm i \hat{S}_{y}(j), j=1,2
$$

c) $[2 \mathrm{pts}]$ Write the total Hamiltonian, $\hat{H}=\hat{H}_{o}+\hat{H}^{\prime}$ as a matrix in the $|i\rangle$ basis.
d) [3pts] Find the eigenstates and eigenvalues of this total Hamiltonian and draw the energy level diagram as a function of the magnetic field strength.

PROBLEM 4

Consider a two state system described by the time-dependent Hamiltonian

$$
H=\left(\begin{array}{cc}
0 & \frac{\beta}{2} e^{i \omega t} \\
\frac{\beta}{2}^{*} e^{-i \omega t} & \hbar \omega_{1}
\end{array}\right)
$$

with

$$
\vec{v}(t)=\binom{v_{o}(t)}{v_{1}(t)}
$$

This is the Hamiltonian of a spin $1 / 2$ particle in a strong magnetic field in the \hat{z} direction combined with a rotating magnetic field in the $x-y$ plane and models many NMR experiments. To analyze this system, it is convenient to write $\vec{v}(t)$ in terms of the time dependent vector $\vec{s}(t)=\binom{s_{o}(t)}{s_{1}(t)}$ so that

$$
\vec{v}(t)=\binom{s_{o}(t)}{s_{1}(t) e^{-i \omega t}}
$$

For the case that $\beta=0$ and $\omega=\omega_{1}$ (no rotating magnetic field), $s_{o}(t)$ and $s_{1}(t)$ are constant. The time dependence of $s_{o}(t)$ and $s_{1}(t)$ allows us to determine the probability that the rotating magnetic field induces a spin flip.
a) [1pt] Show that for $\beta=0, \vec{v}(t)$ statisfies the time-dependent Schrodinger equation

$$
H \vec{v}(t)=i \hbar \frac{\partial \vec{v}(t)}{\partial t}
$$

when when $s_{o}(t)$ and $s_{1}(t)$ are constant and $\omega=\omega_{1}$.
b) [3pts] For the case that β is a nonzero constant, use Schrödinger's equation for $\vec{v}(t)$ to show that $\vec{s}(t)$ evolves according to the effective Hamiltonian H^{\prime} with

$$
H^{\prime}=\left(\begin{array}{cc}
0 & \frac{\beta}{2} \\
\frac{\beta}{2}^{*} & \hbar \Delta \omega
\end{array}\right)
$$

and

$$
\Delta \omega=\omega_{1}-\omega
$$

c) $[3 \mathrm{pts}]$ Assuming the system starts in the state $\vec{s}(t)=\binom{0}{1}$ at $t=0$, find $\vec{s}(t)$.
d) $[3 \mathrm{pts}]$ Assuming the system starts in the state $\vec{s}(t)=\binom{0}{1}$ at $t=0$, find the probability of finding the system in the state $\binom{1}{0}$ as a function of time.

PROBLEM 5

A particle of mass m is confined to a two-dimensional plane. The potential energy of the particle is

$$
V(\rho)= \begin{cases}0 & \rho<\rho_{o} \\ \infty & \rho \geq \rho_{o}\end{cases}
$$

where ρ is the radial coordinate of plane polar coordinate (ρ, φ). This potential confines the particle to the region of space $\rho \leq \rho_{o}$. The particle in this "circular square well" is the quantum analog of a marble on the head of a drum. The stationary-state Hamiltonian eigenfunctions of the particle are $\Psi_{n, m_{\ell}}(\rho, \varphi)$ with eigenenergies E.
a) [4pts] Write down a second-order differential equation for the radial function $R_{n, m_{\ell}}(\rho)$ in the bound-state Hamiltonian eigen functions

$$
\psi_{n, m_{\ell}}(\rho, \varphi)=R_{n, m_{\ell}}(\rho) \Phi_{m_{\ell}}(\varphi)
$$

where $\Phi_{m_{\ell}}(\varphi)$ is an eigenfunction of the orbital angular momentum operator $\hat{L}=-i \hbar \partial / \partial \varphi$. Write down and justify the boundary conditions that physically admissible solutions to your differential equation must satisfy, and write down the normalization integral for the radial functions.
b) [2pts] What, if anything, can you conclude from your differential equation about the degree of degeneracy of the bound-state energies $E_{n, m_{\ell}}$. Justify your answer.
c) [2pts] Derive an equation for the bound-state energies $E_{n, m_{\ell}}$ in terms of the zeros $\varsigma_{n, \nu}$ of the cylindrical Bessel function of the first kind, $J_{ \pm \nu}(z)$. (See the hint below.)
d) $[2 \mathrm{pts}]$ Estimate the energies of the lowest three bound states of the cylindrical square well. Express your answers in terms of fundamental constants, the mass m, and the well radius ρ_{o}.

Hint: The cylindrical Bessel functions are solutions of Bessel's equation

$$
\left[z^{2} \frac{d^{2}}{d z^{2}}+z \frac{d}{d z}+\left(z^{2}-\nu^{2}\right)\right] J_{ \pm \nu}(z)=0
$$

The so-called cylindrical Bessel functions of the first kind, $J_{ \pm \nu}(z)$, are regular at the origin and normalizable. These functions oscillate with increasing z and have an infinite number of nodes, i.e., values for which $z=\varsigma_{n, \nu}>0$ at which $J_{ \pm \nu}(z)=0$; these nodes are indexed by $n=1,2, \ldots$ The figure shows the first four cylindrical Bessel functions.

First four cylindrical Bessel functions of the first kind (for use in problem 5.)

PROBLEM 6

Consider an ensemble of identical particles whose state space is spanned by the basis

$$
\left|e_{1}\right\rangle=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad\left|e_{2}\right\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad\left|e_{3}\right\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Assume that the Hamiltonian H and an observable A are represented by

$$
H=\hbar \omega_{o}\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 2 & 0 \\
-1 & 0 & 0
\end{array}\right) \text {, and } A=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The eigenvalues of H are $\hbar \omega, 2 \hbar \omega$, and $-\hbar \omega$ with eigenvectors given by

$$
|\hbar \omega\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \quad|2 \hbar \omega\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \text { and }|-\hbar \omega\rangle \frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

The eigenvalues of A are $-1,1$, and 1 with eigenvectors given by

$$
\left|a_{-1}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right),\left|a_{1,1}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left|a_{1,2}\right\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

For all times $t<0$, the particles are in a state given by

$$
\left|\psi_{o}\right\rangle=\frac{1}{2}\left(\begin{array}{c}
1 \\
\sqrt{2} \\
-1
\end{array}\right) .
$$

a) [1pt] Write down an expression for the time evolution operator $U\left(t, t_{o}=0\right)$ in Dirac notation
b) [2 pt] Determine $|\psi(t)\rangle$, the state vector at an arbitrary time.
c) $[2 \mathrm{pt}]$ What is the probability that a measurement of A at a time $t=0$ yeilds $a=-1$?
d) [2 pt] What is the probability that a measurement of A at an arbitrary time t yields a value $a=-1$?
e) [3 pt] Assume that at $t=0$ the operator A is observed to be 1 . What is the probability that a short time later $(0<t \ll 1 / \omega)$, the eigenenergy of the system is observed to be $-\hbar \omega$?

