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Quantum Mechanics
Qualifying Exam – August 2022

Notes and Instructions:

• There are 6 problems and 7 pages.

• Be sure to write your alias at the top of every page.

• Number each page with the problem number, and page number of your solution (e.g.
“Problem 3, p. 1/4” is the first page of a four page solution to problem 3).

• You must show all your work.

Possibly useful formulas:

Pauli spin matrices:

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

One-dimensional simple harmonic oscillator operators:

x̂ =

√

h̄

2mω
(â+ â†), p̂ = −i

√

h̄mω

2
(â− â†),

[

â, â†
]

= 1,

â|n〉 =
√
n|n− 1〉, and â†|n〉 =

√
n+ 1|n+ 1〉 .

The Hermite polynomials:

H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2

Hn(y) = (−1)ney
2 ∂n

∂yn
e−y2

Spherical Harmonics:

Y 0
0 (θ, ϕ) =

√

1
4π

Y ±1
1 (θ, ϕ) = ∓

√

3
8π sin θ e±iϕ

Y 0
1 (θ, ϕ) =

√

3
4π cos θ

Y ±2
2 (θ, ϕ) =

√

15
32π sin2 θ e±2iϕ

Y ±1
2 (θ, ϕ) = ∓

√

15
8π sin θ cos θ e±iϕ

Y 0
2 (θ, ϕ) =

√

5
16π (3 cos2 θ − 1)

Angular momentum raising and lowering operators:

L± = Lx ± i Ly

L+|ℓ,m〉 = h̄[ℓ(ℓ+ 1)−m(m+ 1)]1/2|ℓ,m+ 1〉
L−|ℓ,m〉 = h̄[ℓ(ℓ+ 1)−m(m− 1)]1/2|ℓ,m− 1〉

Gaussian Integral:

I0(α) =
∫ ∞

−∞
e−αx2

dx = (π/α)1/2 , α > 0

where α is usually chosen to be real.
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PROBLEM 1: Infinite Square Well

(a) Consider a one-dimensional infinite square well:

U(x) =

{

0 − L < x < L
+∞ otherwise

(i) [2 points] Show that even and odd eigenfunctions are given by

ψeven(x) =
1√
L
cos

(

(2n+ 1)πx

2L

)

n = 0, 1, 2, 3, · · ·

ψodd(x) =
1√
L
sin

(

nπx

L

)

, n = 1, 2, 3 · · ·

(ii) [3 points] Calculate the position uncertainty for even and odd eigenstates.

(iii) [3 points] Assume the particle is in the ground state. Suddenly, the width of the
well doubles (−2L < x < 2L). Immediately after the well doubles, what is the
probability to find the particle in the (new) ground state?

(b) [2 points] Consider a one-dimensional infinite square well with an attractive (α > 0)
delta function at its center:

U(x) =

{

−αδ(x) − L < x < L
+∞ otherwise

Find the eigenfunction corresponding to the first excited state.
Possibly useful integrals:

∫ L

−L
x2cos2

(

nπx

2L

)

dx =
L3

3

(

1 +
6(−1)n

n2π2

)

∫ L

−L
x2sin2

(

nπx

2L

)

dx =
L3

3

(

1− 6(−1)n

n2π2

)
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PROBLEM 2: Harmonic Oscillator

(a) [3 points] The Schrödinger equation for the quantum mechanical harmonic oscillator can
be written as

(

â+â− +
1

2

)

h̄ωψ = Eψ ,

where â± are the ladder operators given by

â± =
1√
2m

(

h̄

i

d

dx
± imωx

)

.

If ψ satisfies the Schrödinger equation with energy E, show that φ = â−ψ also satisfies
the Schrödinger equation but with energy E − h̄ω.

(b) [4 points] The harmonic oscillator has a lowest energy state represented by ψ0. Applica-
tion of the ladder operator â− to this state generates a wavefunction that does not exist
such that we can write,

â−ψ0 = 0.

Use this equation to derive ψ0(x), the wavefunction for the ground state. Do not bother
to normalize it.

(c) [3 points] Use your solution for ψ0(x) and the Schrödinger equation to determine the
energy of the ground state of this system.
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PROBLEM 3: Angular momentum

A particle in a central potential has an orbital angular momentum ℓ = 2h̄ and a spin
s = 1h̄.

(a) [2 points] Find the energy levels associated with the spin-orbit interaction term of the

form Ĥo = A~L · ~S where A is a constant.

(b) [2 points] Find the degeneracy for each energy level.

(c)-(f) Now consider an electron in a state described by the wave function

ψ =
1√
4π

(eiφ sin θ + cos θ)g(r) ,

where
∫ ∞

0

|g(r)|2r2dr = 1 ,

where φ and θ are the azimuthal and polar angles respectively.

(c) [1 point] Show
∫ |ψ|2 d3x = 1.

(d) [2 points] What are the possible results of a measurement of the z-component Lz of the
angular momentum of the electron in this state?

(e) [2 points] What is the probability of obtaining each of the possible results in part (d)?

(f) [1 point] What is the expectation value of Lz?
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PROBLEM 4: Spin

Consider the properties of a spin-1/2 particle. The spin physics is described by a two-
dimensional space and the spin operators:

Sx =
h̄

2

(

0 1
1 0

)

, Sy =
h̄

2

(

0 −i
i 0

)

, Sz =
h̄

2

(

1 0
0 −1

)

defined using the usual basis states

Sz|±〉 = ± h̄
2
|±〉 (1)

The square of the ”total” spin operator is

S2 = S2
x + S2

y + S2
z (2)

(a) [1 point] Show that Sx and Sz do not have simultaneous eigenvectors. Show that the
eigenvectors of Sz are also eigenvectors of S2. What are the eigenvalues? (Show your
work)

(b) [1 point] For any operator Ô and state |χ〉, define the (squared) uncertainty as:

∆2Ô = 〈χ|Ô2|χ〉 − 〈χ|Ô|χ〉2 (3)

For the state |+〉, what is the expectation value 〈Sx〉 and the uncertainty ∆Sx? Show
your work and give a brief physical explanation of this result.

(c)-(g) Consider a particle initially (t=0) in the state

χ = A

(

1 + i√
2

)

,

where A is a real constant.
The spin is in a magnetic field giving an interaction:

Ĥ = −µB0Sz , Ĥ|±〉 = ±h̄ω0|±〉 (4)

where ω0 = µB0/2 will help simplify the notation.

(c) [2 points] What is the time-dependent expectation value of Sz?

(d) [1 point] For the situation described in Part (c), what are possible outcomes of a mea-
surement of Sz and their probabilities as a function of time?

(e) [2 points] What are the eigenvalues and eigenvectors of Sx? Show your work.

(f) [2 points] Again if the particle is initially (t=0) in the state |χ〉, what is the time-
dependent expectation value of Sx?

(g) [1 point] For the situation described in Part (f), what are possible outcomes of a mea-
surement of Sx and their probabilities as a function of time?
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PROBLEM 5: Multi-fermion Systems

Consider two spin-half particles, both confined in an infinite potential well stretching
from −L/2 to L/2. The particles do not interact with each other. Denote by |n〉i (with
i = 1, 2) the energy eigenstate with level n of the ith particle. The single particle normalized
energy eigenstates can be solved using the boundary conditions provided, resulting in standard
expressions: 〈x|n〉 ∼ cos(nπx/L) for n odd; 〈x|n〉 ∼ sin(nπx/L) for n even. Further, denote
by | ↑〉i and | ↓〉i (with i = 1, 2) the spin eigenstate of the ith particle.

Define the set S = {|n〉i , | ↑〉i , | ↓〉i} for all n, i = 1, 2 on which a tensor product ⊗ is
naturally defined.

(a) [1 point] First warm-up question: construct symmetric and antisymmetric combinations
of the spin basis vectors | ↑〉1, | ↓〉1, | ↑〉2 and | ↓〉2. Here, symmetry refers to exchange
between particles 1 and 2.

(b) [1 point] Second warm-up question: construct symmetric and antisymmetric combina-
tions of the spatial energy eigenstate basis vectors |1〉1, |1〉2, |2〉1, |2〉2. Here, symmetry
refers to exchange between particles 1 and 2.

(c) [2 points] Using elements of the set S (specifically |1〉1, |1〉2, | ↑〉1, | ↓〉1, | ↑〉2 and | ↓〉2)
and tensor products between them, write down the ground state |ψ1〉 of the two fermion
system. State whether |ψ1〉 is overall symmetric or antisymmetric.

(d) [2 points] Next, consider the first excited energy eigenstate of the two-fermion system.
There are four degenerate states at this level. Using the elements of S, (specifically
|1〉1, |1〉2, |2〉1, |2〉2, | ↑〉1, | ↓〉1, | ↑〉2 and | ↓〉2), construct these states.

(e) [0.5 points] Let’s introduce an interaction Hamiltonian of the form

Ĥint = A ~S1 · ~S2 (5)

where ~S1 and ~S2 are the dimensionless spin operators of the two fermions with h̄ = 1
for simplicity. Recast Ĥint in terms of ~S2, where ~S = ~S1 + ~S2.

(f) [1.5 points] Check whether the symmetric and antisymmetric spin states in Part (a) are
eigenfunctions of Ĥint and write down the corresponding eigenvalues.

(g) [2 points] Check whether the ground state and first excited states of the non-interacting
two fermion system that you wrote down in Parts (c) and (d), remain energy eigenstates
once Ĥint is turned on. If the non-interacting ground state and first excited states had
energy E1 and E2, respectively, what are the energies of these states after Ĥint is turned
on?
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PROBLEM 6: A Central Potential

Consider a pseudo-particle with mass µ subject to a central potential V (r) in two-dimensional
space, where r2 is equal to x2+y2. The kinetic energy operator in Cartesian coordinates (x, y)
and polar coordinates (r, ϕ) reads

−h̄2
2µ

(

∂2

∂x2
+

∂2

∂y2

)

(6)

and

− h̄2

2µ

[

1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2
∂2

∂ϕ2

]

, (7)

respectively.

(a) [1.5 points] Using the ansatz

ψ(r, ϕ) = exp(ımϕ)R(r), (8)

derive the radial Schrödinger equation; carefully explain all steps.
You should find:

[

− h̄2

2µ

(

1

r

∂

∂r

(

r
∂

∂r

)

− m2

r2

)

+ V (r)

]

R(r) = ER(r). (9)

(b) [1 point] What are the allowed values of m? Carefully explain your answer.

(c) [1 point] Provide a physical interpretation of the quantity m.

(d) [2.5 points] Introduce a scaled radial wave function u(r) such that the radial kinetic
energy does not contain a first derivative with respect to r.
You should find that u(r) fulfills the following equation:



− h̄2

2µ

∂2

∂r2
+
h̄2
(

m2 − 1

4

)

2µr2



 u(r) = Eu(r). (10)

(e) [2 points] Consider the m = 0 case. Assuming a bound state exists, is the ground state
energy of the pseudo-particle in 2D more or less strongly bound than that in 3D. Ex-
plain. Please provide a mathematical as well as a pictorial/physical explanation.

(f) [2 points] Considering m = 0 and a potential V (r) that goes to infinity as r → 0 and
that supports a bound state with energy Eb.st., what are the r → 0 and r → ∞ behaviors
of u(r)?


