Quantum Mechanics Qualifying Exam - August 2022

Notes and Instructions:

- There are $\mathbf{6}$ problems and $\mathbf{7}$ pages.
- Be sure to write your alias at the top of every page.
- Number each page with the problem number, and page number of your solution (e.g. "Problem 3, p. 1/4" is the first page of a four page solution to problem 3).
- You must show all your work.

Possibly useful formulas:
Pauli spin matrices:

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

One-dimensional simple harmonic oscillator operators:

$$
\begin{aligned}
\hat{x} & =\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}+\hat{a}^{\dagger}\right), \quad \hat{p}=-i \sqrt{\frac{\hbar m \omega}{2}}\left(\hat{a}-\hat{a}^{\dagger}\right), \quad\left[\hat{a}, \hat{a}^{\dagger}\right]=1, \\
\hat{a}|n\rangle & =\sqrt{n}|n-1\rangle, \quad \text { and } \quad \hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle
\end{aligned}
$$

The Hermite polynomials:

$$
\begin{aligned}
H_{0}(y) & =1, \quad H_{1}(y)=2 y, \quad H_{2}(y)=4 y^{2}-2 \\
H_{n}(y) & =(-1)^{n} e^{y^{2}} \frac{\partial^{n}}{\partial y^{n}} e^{-y^{2}}
\end{aligned}
$$

Spherical Harmonics:

$$
\begin{array}{ll}
Y_{0}^{0}(\theta, \varphi)=\sqrt{\frac{1}{4 \pi}} & Y_{2}^{ \pm 2}(\theta, \varphi)=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \varphi} \\
Y_{1}^{ \pm 1}(\theta, \varphi)=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \varphi} & Y_{2}^{ \pm 1}(\theta, \varphi)=\mp \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{ \pm i \varphi} \\
Y_{1}^{0}(\theta, \varphi)=\sqrt{\frac{3}{4 \pi}} \cos \theta & Y_{2}^{0}(\theta, \varphi)=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right)
\end{array}
$$

Angular momentum raising and lowering operators:

$$
\begin{aligned}
L_{ \pm} & =L_{x} \pm i L_{y} \\
L_{+}|\ell, m\rangle & =\hbar[\ell(\ell+1)-m(m+1)]^{1 / 2}|\ell, m+1\rangle \\
L_{-}|\ell, m\rangle & =\hbar[\ell(\ell+1)-m(m-1)]^{1 / 2}|\ell, m-1\rangle
\end{aligned}
$$

Gaussian Integral:

$$
I_{0}(\alpha)=\int_{-\infty}^{\infty} e^{-\alpha x^{2}} d x=(\pi / \alpha)^{1 / 2}, \quad \alpha>0
$$

where α is usually chosen to be real.

PROBLEM 1: Infinite Square Well

(a) Consider a one-dimensional infinite square well:

$$
U(x)=\left\{\begin{array}{lc}
0 & -L<x<L \\
+\infty & \text { otherwise }
\end{array}\right.
$$

(i) [2 points] Show that even and odd eigenfunctions are given by

$$
\begin{aligned}
\psi_{\mathrm{even}}(x) & =\frac{1}{\sqrt{L}} \cos \left(\frac{(2 n+1) \pi x}{2 L}\right) \quad n=0,1,2,3, \cdots \\
\psi_{\mathrm{odd}}(x) & =\frac{1}{\sqrt{L}} \sin \left(\frac{n \pi x}{L}\right), \quad n=1,2,3 \cdots
\end{aligned}
$$

(ii) [3 points] Calculate the position uncertainty for even and odd eigenstates.
(iii) [3 points] Assume the particle is in the ground state. Suddenly, the width of the well doubles $(-2 L<x<2 L)$. Immediately after the well doubles, what is the probability to find the particle in the (new) ground state?
(b) [2 points] Consider a one-dimensional infinite square well with an attractive $(\alpha>0)$ delta function at its center:

$$
U(x)=\left\{\begin{array}{l}
-\alpha \delta(x) \quad-L<x<L \\
+\infty \quad \text { otherwise }
\end{array}\right.
$$

Find the eigenfunction corresponding to the first excited state.
Possibly useful integrals:

$$
\begin{aligned}
\int_{-L}^{L} x^{2} \cos ^{2}\left(\frac{n \pi x}{2 L}\right) d x & =\frac{L^{3}}{3}\left(1+\frac{6(-1)^{n}}{n^{2} \pi^{2}}\right) \\
\int_{-L}^{L} x^{2} \sin ^{2}\left(\frac{n \pi x}{2 L}\right) d x & =\frac{L^{3}}{3}\left(1-\frac{6(-1)^{n}}{n^{2} \pi^{2}}\right)
\end{aligned}
$$

PROBLEM 2: Harmonic Oscillator

(a) [3 points] The Schrödinger equation for the quantum mechanical harmonic oscillator can be written as

$$
\left(\hat{a}_{+} \hat{a}_{-}+\frac{1}{2}\right) \hbar \omega \psi=E \psi,
$$

where $\hat{a}_{ \pm}$are the ladder operators given by

$$
\hat{a}_{ \pm}=\frac{1}{\sqrt{2 m}}\left(\frac{\hbar}{i} \frac{d}{d x} \pm i m \omega x\right) .
$$

If ψ satisfies the Schrödinger equation with energy E, show that $\phi=\hat{a}_{-} \psi$ also satisfies the Schrödinger equation but with energy $E-\hbar \omega$.
(b) [4 points] The harmonic oscillator has a lowest energy state represented by ψ_{0}. Application of the ladder operator \hat{a}_{-}to this state generates a wavefunction that does not exist such that we can write,

$$
\hat{a}_{-} \psi_{0}=0 .
$$

Use this equation to derive $\psi_{0}(x)$, the wavefunction for the ground state. Do not bother to normalize it.
(c) [3 points] Use your solution for $\psi_{0}(x)$ and the Schrödinger equation to determine the energy of the ground state of this system.

PROBLEM 3: Angular momentum

A particle in a central potential has an orbital angular momentum $\ell=2 \hbar$ and a spin $s=1 \hbar$.
(a) [2 points] Find the energy levels associated with the spin-orbit interaction term of the form $\hat{H}_{o}=A \vec{L} \cdot \vec{S}$ where A is a constant.
(b) [2 points] Find the degeneracy for each energy level.
(c)-(f) Now consider an electron in a state described by the wave function

$$
\psi=\frac{1}{\sqrt{4 \pi}}\left(e^{i \phi} \sin \theta+\cos \theta\right) g(r)
$$

where

$$
\int_{0}^{\infty}|g(r)|^{2} r^{2} d r=1
$$

where ϕ and θ are the azimuthal and polar angles respectively.
(c) $[1$ point $]$ Show $\int|\psi|^{2} d^{3} x=1$.
(d) [2 points] What are the possible results of a measurement of the z-component L_{z} of the angular momentum of the electron in this state?
(e) [2 points] What is the probability of obtaining each of the possible results in part (d)?
(f) [1 point] What is the expectation value of L_{z} ?

PROBLEM 4: Spin

Consider the properties of a spin- $1 / 2$ particle. The spin physics is described by a twodimensional space and the spin operators:

$$
S_{x}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad S_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad S_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

defined using the usual basis states

$$
\begin{equation*}
S_{z}| \pm\rangle= \pm \frac{\hbar}{2}| \pm\rangle \tag{1}
\end{equation*}
$$

The square of the "total" spin operator is

$$
\begin{equation*}
S^{2}=S_{x}^{2}+S_{y}^{2}+S_{z}^{2} \tag{2}
\end{equation*}
$$

(a) [1 point] Show that S_{x} and S_{z} do not have simultaneous eigenvectors. Show that the eigenvectors of S_{z} are also eigenvectors of S^{2}. What are the eigenvalues? (Show your work)
(b) [1 point $]$ For any operator \hat{O} and state $|\chi\rangle$, define the (squared) uncertainty as:

$$
\begin{equation*}
\Delta^{2} \hat{O}=\langle\chi| \hat{O}^{2}|\chi\rangle-\langle\chi| \hat{O}|\chi\rangle^{2} \tag{3}
\end{equation*}
$$

For the state $|+\rangle$, what is the expectation value $\left\langle S_{x}\right\rangle$ and the uncertainty ΔS_{x} ? Show your work and give a brief physical explanation of this result.
(c)-(g) Consider a particle initially $(\mathrm{t}=0)$ in the state

$$
\chi=A\binom{1+i}{\sqrt{2}}
$$

where A is a real constant.
The spin is in a magnetic field giving an interaction:

$$
\begin{equation*}
\hat{H}=-\mu B_{0} S_{z}, \quad \hat{H}| \pm\rangle= \pm \hbar \omega_{0}| \pm\rangle \tag{4}
\end{equation*}
$$

where $\omega_{0}=\mu B_{0} / 2$ will help simplify the notation.
(c) [2 points] What is the time-dependent expectation value of S_{z} ?
(d) [1 point] For the situation described in Part (c), what are possible outcomes of a measurement of S_{z} and their probabilities as a function of time?
(e) [2 points] What are the eigenvalues and eigenvectors of S_{x} ? Show your work.
(f) [2 points] Again if the particle is initially $(\mathrm{t}=0)$ in the state $|\chi\rangle$, what is the timedependent expectation value of S_{x} ?
(g) [1 point] For the situation described in Part (f), what are possible outcomes of a measurement of S_{x} and their probabilities as a function of time?

PROBLEM 5: Multi-fermion Systems

Consider two spin-half particles, both confined in an infinite potential well stretching from $-L / 2$ to $L / 2$. The particles do not interact with each other. Denote by $|n\rangle_{i}$ (with $i=1,2)$ the energy eigenstate with level n of the i th particle. The single particle normalized energy eigenstates can be solved using the boundary conditions provided, resulting in standard expressions: $\langle x \mid n\rangle \sim \cos (n \pi x / L)$ for n odd; $\langle x \mid n\rangle \sim \sin (n \pi x / L)$ for n even. Further, denote by $|\uparrow\rangle_{i}$ and $|\downarrow\rangle_{i}$ (with $\left.i=1,2\right)$ the spin eigenstate of the i th particle.

Define the set $S=\left\{|n\rangle_{i},|\uparrow\rangle_{i},|\downarrow\rangle_{i}\right\}$ for all $n, i=1,2$ on which a tensor product \otimes is naturally defined.
(a) [1 point] First warm-up question: construct symmetric and antisymmetric combinations of the spin basis vectors $|\uparrow\rangle_{1},|\downarrow\rangle_{1},|\uparrow\rangle_{2}$ and $|\downarrow\rangle_{2}$. Here, symmetry refers to exchange between particles 1 and 2 .
(b) [1 point] Second warm-up question: construct symmetric and antisymmetric combinations of the spatial energy eigenstate basis vectors $|1\rangle_{1},|1\rangle_{2},|2\rangle_{1},|2\rangle_{2}$. Here, symmetry refers to exchange between particles 1 and 2 .
(c) [2 points] Using elements of the set S (specifically $|1\rangle_{1},|1\rangle_{2},|\uparrow\rangle_{1},|\downarrow\rangle_{1},|\uparrow\rangle_{2}$ and $|\downarrow\rangle_{2}$) and tensor products between them, write down the ground state $\left|\psi_{1}\right\rangle$ of the two fermion system. State whether $\left|\psi_{1}\right\rangle$ is overall symmetric or antisymmetric.
(d) [2 points] Next, consider the first excited energy eigenstate of the two-fermion system. There are four degenerate states at this level. Using the elements of S, (specifically $|1\rangle_{1},|1\rangle_{2},|2\rangle_{1},|2\rangle_{2},|\uparrow\rangle_{1},|\downarrow\rangle_{1},|\uparrow\rangle_{2}$ and $\left.|\downarrow\rangle_{2}\right)$, construct these states.
(e) [0.5 points] Let's introduce an interaction Hamiltonian of the form

$$
\begin{equation*}
\hat{H}_{\mathrm{int}}=A \vec{S}_{1} \cdot \vec{S}_{2} \tag{5}
\end{equation*}
$$

where \vec{S}_{1} and \vec{S}_{2} are the dimensionless spin operators of the two fermions with $\hbar=1$ for simplicity. Recast $\hat{H}_{\text {int }}$ in terms of \vec{S}^{2}, where $\vec{S}=\vec{S}_{1}+\vec{S}_{2}$.
(f) [1.5 points] Check whether the symmetric and antisymmetric spin states in Part (a) are eigenfunctions of \hat{H}_{int} and write down the corresponding eigenvalues.
(g) [2 points] Check whether the ground state and first excited states of the non-interacting two fermion system that you wrote down in Parts (c) and (d), remain energy eigenstates once $\hat{H}_{\text {int }}$ is turned on. If the non-interacting ground state and first excited states had energy E_{1} and E_{2}, respectively, what are the energies of these states after $\hat{H}_{\text {int }}$ is turned on?

PROBLEM 6: A Central Potential

Consider a pseudo-particle with mass μ subject to a central potential $V(r)$ in two-dimensional space, where r^{2} is equal to $x^{2}+y^{2}$. The kinetic energy operator in Cartesian coordinates (x, y) and polar coordinates (r, φ) reads

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 \mu}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}\right] \tag{7}
\end{equation*}
$$

respectively.
(a) [1.5 points] Using the ansatz

$$
\begin{equation*}
\psi(r, \varphi)=\exp (\imath m \varphi) R(r) \tag{8}
\end{equation*}
$$

derive the radial Schrödinger equation; carefully explain all steps.
You should find:

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 \mu}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)-\frac{m^{2}}{r^{2}}\right)+V(r)\right] R(r)=E R(r) \tag{9}
\end{equation*}
$$

(b) [1 point] What are the allowed values of m ? Carefully explain your answer.
(c) [1 point $]$ Provide a physical interpretation of the quantity m.
(d) [2.5 points] Introduce a scaled radial wave function $u(r)$ such that the radial kinetic energy does not contain a first derivative with respect to r. You should find that $u(r)$ fulfills the following equation:

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial r^{2}}+\frac{\hbar^{2}\left(m^{2}-\frac{1}{4}\right)}{2 \mu r^{2}}\right] u(r)=E u(r) \tag{10}
\end{equation*}
$$

(e) [2 points] Consider the $m=0$ case. Assuming a bound state exists, is the ground state energy of the pseudo-particle in 2D more or less strongly bound than that in 3D. Explain. Please provide a mathematical as well as a pictorial/physical explanation.
(f) [2 points] Considering $m=0$ and a potential $V(r)$ that goes to infinity as $r \rightarrow 0$ and that supports a bound state with energy $E_{b . s t}$., what are the $r \rightarrow 0$ and $r \rightarrow \infty$ behaviors of $u(r)$?

