Quantum Mechanics Qualifying Exam-August 2012

Notes and Instructions:

- There are $\mathbf{6}$ problems and $\mathbf{7}$ pages.
- Be sure to write your alias at the top of every page.
- Number each page with the problem number, and page number of your solution (e.g. "Problem 3, p. 1/4" is the first page of a four page solution to problem 3).
- You must show all your work.

Possibly useful formulas:
Pauli spin matrices:

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

One-dimensional simple harmonic oscillator operators:

$$
\begin{aligned}
X & =\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{\dagger}\right) \\
P & =-i \sqrt{\frac{\hbar m \omega}{2}}\left(a-a^{\dagger}\right)
\end{aligned}
$$

Spherical Harmonics:

$$
\begin{array}{ll}
Y_{0}^{0}(\theta, \varphi)=\frac{1}{\sqrt{4 \pi}} & Y_{2}^{2}(\theta, \varphi)=\frac{5}{\sqrt{96 \pi}} 3 \sin ^{2} \theta e^{2 i \varphi} \\
Y_{2}^{1}(\theta, \varphi)=-\frac{5}{\sqrt{24 \pi}} 3 \sin \theta \cos \theta e^{i \varphi} \\
Y_{1}^{1}(\theta, \varphi)=-\frac{3}{\sqrt{8 \pi}} \sin \theta e^{i \varphi} & Y_{2}^{0}(\theta, \varphi)=\frac{5}{\sqrt{4 \pi}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right) \\
Y_{1}^{0}(\theta, \varphi)=\frac{3}{\sqrt{4 \pi}} \cos \theta & Y_{2}^{-1}(\theta, \varphi)=\frac{5}{\sqrt{24 \pi}} 3 \sin \theta \cos \theta e^{-i \varphi} \\
Y_{1}^{-1}(\theta, \varphi)=\frac{3}{\sqrt{8 \pi}} \sin \theta e^{-i \varphi} & Y_{2}^{-2}(\theta, \varphi)=\frac{5}{\sqrt{96 \pi}} 3 \sin ^{2} \theta e^{-2 i \varphi}
\end{array}
$$

In spherical coordinates, the Laplacian is

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}
$$

PROBLEM 1: Eigenvalue Equation and Time Evolution

The Hamiltonian for a certain three-level system is represented by the matrix

$$
H=\left(\begin{array}{lll}
a & 0 & b \\
0 & c & 0 \\
b & 0 & a
\end{array}\right)
$$

where a, b, and c are real numbers and $a-c \neq \pm b$.
(a) Find the eigenvalues E_{n} and normalized eigenvectors $\left|E_{n}\right\rangle, n=1,2,3$ of H. [4 points]
(b) If the system starts out in the state

$$
|\psi(0)\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

what is $|\psi(t)\rangle$? [3 points]
(c) If the system starts out in the state

$$
|\psi(0)\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

what is $|\psi(t)\rangle$? [3 points]

PROBLEM 2: Generalized Uncertainty Principle

Consider the spin $1 / 2$ operator

$$
\mathbf{S}=\frac{\hbar}{2} \vec{\sigma},
$$

where $\vec{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ is a vector of Pauli matrices, which are defined in the basis of the S_{z} operator eigenvectors,
(a) Compute the commutator $\left[S_{i}, S_{j}\right]$, with $i, j=x, y, z$. [2 Points]
(b) Compute the expectation values $\left\langle\left(\delta S_{x}\right)^{2}\right\rangle$ and $\left\langle\left(\delta S_{y}\right)^{2}\right\rangle$ for the state

$$
|\alpha\rangle=\cos (\alpha)|+\rangle+\sin (\alpha)|-\rangle,
$$

where $\delta \mathbf{S}=\mathbf{S}-\langle\mathbf{S}\rangle$. Show explicitly that the relation

$$
\left\langle\left(\delta S_{x}\right)^{2}\right\rangle\left\langle\left(\delta S_{y}\right)^{2}\right\rangle \geq \frac{1}{4}\left|\left\langle\left[S_{x}, S_{y}\right]\right\rangle\right|^{2}
$$

is satisfied. What does it physically mean? [4 Points]
(c) Find the states that maximize and minimize the product $\left\langle\left(\delta S_{x}\right)^{2}\right\rangle\left\langle\left(\delta S_{y}\right)^{2}\right\rangle$. Interpret the results. [2 Points]
(d) Suppose one performs an experiment which filters the $+\hbar / 2$ eigenstate of the S_{z} operator from the initially prepared state $|\alpha\rangle$. Then the S_{x} component of the spin is measured. Compute the expectation value of this measurement in the state $|\alpha\rangle$. [2 Points]

PROBLEM 3: Clebsch-Gordan Coefficients

Consider a system of 2 spin $1 / 2$ particles, i.e. $s_{1}=\frac{1}{2}, s_{2}=\frac{1}{2}$ where:

$$
\begin{gathered}
S_{1 z}\left|s_{1}, m_{s 1}\right\rangle=m_{s 1} \hbar\left|s_{1}, m_{s 1}\right\rangle \\
S_{1}^{2}\left|s_{1}, m_{s 1}\right\rangle=s_{1}\left(s_{1}+1\right) \hbar^{2}\left|s_{1}, m_{s 1}\right\rangle=3 / 4 \hbar^{2}\left|s_{1}, m_{s 1}\right\rangle
\end{gathered}
$$

and similarly for $S_{2 z}$ and S_{2}^{2}.
Initially, the 2 spin particles are uncoupled and subject to a Hamiltonian:

$$
H_{0}=\omega_{1} S_{1 z}+\omega_{2} S_{2 z}
$$

The eigenvectors $\left|s_{1}, s_{2} ; m_{s 1}, m_{s 2}\right\rangle$, for this Hamiltonian can be written in compact notation as: $|++\rangle,|+-\rangle,|-+\rangle,|--\rangle$ where the + and - denote the sign of $m_{s 1}$ and $m_{s 2}$ respectively.

Answer the following questions:
(a) Set up the matrix representation for H_{0} in this uncoupled basis. [1 point]

Now add an interaction term: $A \vec{S}_{1} \cdot \vec{S}_{2}$ to H_{0} :

$$
H=H_{0}+A \vec{S}_{1} \cdot \vec{S}_{2}
$$

(b) Determine the commutator : $\left[H, S_{1 z}\right]$. Will the uncoupled basis be an eigenbasis for H ? Explain. [2 points]
(c) Determine a coupled basis for this system: $|S, M\rangle$ where S is the value of the total spin $\vec{S}=\vec{S}_{1}+\vec{S}_{2}$ and M is its component, i.e.

$$
S^{2}|S, M\rangle=S(S+1) \hbar^{2}|S, M\rangle, S_{z}|S, M\rangle=M \hbar|S, M\rangle
$$

by setting up the matrix for $S^{2}=\left(\vec{S}_{1}+\vec{S}_{2}\right)^{2}$ in the uncoupled basis and diagonalizing it. List the eigenvectors of S^{2} with the correct values of S and M i.e. as $|S, M\rangle$ states. [3 points]
(d) Identify the Clebsch-Gordan coefficients: $\left\langle s_{1}, s_{2}, m_{s 1}, m_{s 2} \mid S, M\right\rangle$ from the expansions you found in part c). Fill in values for all the quantum numbers in the Dirac braket for each Clebsch-Gordan coefficient and give the numerical value for all the Clebsch-Gordan coefficients you have found. There should be 6 Clebsch-Gordan coefficients. [4 points]

PROBLEM 4: Stationary Perturbation Theory

Suppose an electron is in orbit in the ground state about a tritium nucleus. The tritium nucleus suddenly undergoes beta decay, so that ${ }_{1}^{3} H \rightarrow{ }_{2}^{3} \mathrm{He}+e^{-}+\bar{\nu}_{e}$.
(a) What are the orbital quantum numbers of the still-bound electron after the beta emission and why? [2 points]
(b) Estimate the probability that the orbital electron remains in the ground state after the beta emission. [6 points]
(c) What is the probability that the orbital electron is in an excited state after the beta emission? [2 points]

Helpful information: the radial wavefunction of the still-bound electron in the ground state is $R_{10}=2\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-Z r / a_{0}}$, which is similar to the wavefunction of the hydrogen atom.

PROBLEM 5: Time Dependent Perturbation Theory

A particle of charge q, undergoing simple harmonic motion along the x-axis (1-D), is acted on by a time-dependent homogeneous electric field,

$$
\vec{E}(t)=E_{0} e^{-t^{2} / \tau^{2}} \hat{x}
$$

where E_{0} and τ are constants.
(a) What is the new interaction term in the Hamiltonian for the simple harmonic motion due to the specified electric field? [1 Point]
(b) If the oscillator is in its ground state at $t=-\infty$, find the probability that it will be in an excited state at $t=\infty$. Assume the interaction can be treated as a time-dependent perturbation. [3 Points]
(c) Consider the same charged particle linear harmonic oscillator as in (a). Assuming that $d E / d t$ is small, and that at $t=-\infty$ the oscillator is in the ground state, use the adiabatic approximation to obtain the probability that the oscillator will be found in an excited state as $t \rightarrow \infty$. Compare your result with the one you obtained in (b). [3 Points]
(d) Again consider the charged particle harmonic oscillator but with a slightly different perturbation. For $t<0$

$$
H_{0}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} k x^{2}
$$

For $t>0$

$$
H(t)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} k(x-a)^{2}-k a^{2}
$$

with

$$
a=\frac{q E_{0}}{m \omega^{2}},
$$

where $\omega=\sqrt{k / m}$. Show that in the weak coupling limit for $t>0$ that the only eigenstate of H_{0} which will be excited with any sizable probability is the first excited state, $\psi_{1}(x)$, and that the corresponding transition probability is

$$
P_{10}(t)=\frac{2 q^{2} E_{0}^{2}}{m \hbar \omega^{3}} \sin ^{2}(\omega t / 2)
$$

Assume the perturbation is turned on suddenly (fast). [3 Points]

PROBLEM 6: Neutron Evolution

A polarized beam of neutrons with energy E_{0} and spin projection along the positive z-axis enters abruptly at $t=0$ a region where there is a uniform magnetic field \vec{B}. If we ignore the spatial degrees of freedom the Hamiltonian for the neutron interacting with the magnetic field is

$$
H=-\vec{B} \cdot \vec{\mu}_{n}=2 \omega \hat{n} \cdot \vec{S}
$$

where \hat{n} is a unit vector in the direction of the magnetic field and $\omega=B \mu_{n} / \hbar$.
(a) Hamiltonian: Express \hat{n} in spherical coordinates $\{\theta, \phi\}$ and then find an expression for $\hat{n} \cdot \vec{S}$. [2 points]
(b) Time Evolution Operator: Write down an explicit expression for the time-evolution operator in terms of $\{\theta, \phi, t\}$. [3 points]
(c) Evolved State: Find the state of the time evolved system for any time $t>0$. [2 points]
(d) Expectations: Find the expectation value of the spin \vec{S}. [2 points]
(d) A Special Case: Determine and describe the motion for a system where $\vec{B}=B \hat{x}[1$ point $]$

