E \& M Qualifier

January 14, 2010

To insure that the your work is graded correctly you MUST:

1. use only the blank answer paper provided,
2. write only on one side of the page,
3. put your alias on every page,
4. put the problem \# on every page,
5. start each problem by stating your units e.g., SI or Gaussian,
6. number every page starting with 1 for each problem,
7. put the total \# of pages you use for that problem on every page,
8. staple your exam when done.

Use only the reference material supplied (Schaum's Guides).

1. Consider a thin nonconducting disk of radius R centered on the origin of a coordinate system, lying in the $x-y$ plane, and carrying a surface charge density given by

$$
\sigma=\sigma_{o} \frac{y R}{x^{2}+y^{2}}
$$

(a) $\{6 \mathrm{pts}\}$ Determine the electric field at a location $\vec{r}=z \hat{k}$.
(b) $\{3 \mathrm{pts}\}$ Give an approximation to your answer to part (a) that is valid for the $z \gg R$.
(c) $\{1 \mathrm{pts}\}$ Find the force on a charge q located at a position $\vec{r}=z \hat{k}$.
2. Consider a linear, homogeneous, isotropic, and non-dissipative dielectric (i.e., a dielectric where $\mathbf{D}=\epsilon \mathbf{E}$ and ϵ is a constant) in the shape of a sphere of radius R with a point charge Q embedded at its center.
(a) $\{2 \mathrm{pts}\}$ Find the electric displacement vector \mathbf{D}, the electric field \mathbf{E}, and the polarization density \mathbf{P} inside the dielectric.
(b) $\{2 \mathrm{pts}\}$ Find the bound charge volume density ρ_{D} inside the dielectric.
(c) $\{1 \mathrm{pts}\}$ Find the total bound charge Q_{D} on the $r=R$ boundary of the dielectric.
(d) $\{2 \mathrm{pts}\}$ Find the net charge (free plus bound) at the center of the dielectric.
(e) $\{1 \mathrm{pts}\}$ Find the electric displacement vector \mathbf{D}, the electric field \mathbf{E}, and the polarization density \mathbf{P}, outside the dielectric sphere.
(f) $\{2 \mathrm{pts}\}$ Are \mathbf{D} and \mathbf{E} continuous at $r=R$? If not explain why.
(If you use Gaussian units you can put $\epsilon_{0}=1$.)

3. A thin grounded hollow conducting sphere of radius ' b ' is centered at the origin. A point charge q is located on the z-axis at $z=a<b$ INSIDE the sphere.
(a) $\{5 \mathrm{pts}\}$ Write the total potential for this system as a sum,

$$
\Phi=\Phi_{\text {sphere }}+\Phi_{q}
$$

where Φ_{q} is the potential due to the point charge and $\Phi_{\text {sphere }}$ (in spherical polar coordinates) is the appropriate linear combination of Legendre polynomials $P_{\ell}(\cos (\theta))$. Evaluate the coefficients of the $P_{\ell}(\cos (\theta))$ in the $\Phi_{\text {sphere }}$ expansion. Recall that the Legendre polynomials are independent orthogonal functions satisfying

$$
\int_{-1}^{1} P_{\ell}(x) P_{\ell^{\prime}}(x) d x=\frac{2}{2 \ell+1} \delta_{\ell \ell^{\prime}}
$$

and

$$
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\sum_{\ell=0}^{\ell=\infty} \frac{\left(r_{<}\right)^{\ell}}{\left(r_{>}\right)^{\ell+1}} P_{\ell}(\cos (\gamma))
$$

where γ is the angle between the two directions \mathbf{r} and \mathbf{r}^{\prime}.
(b) $\{5 \mathrm{pts}\}$ Show that your expression for $\Phi_{\text {sphere }}$ is equivalent to the potential of a point charge. Where is the point charge located and what is it's charge?

4. The Homopolar Generator consists of a flat copper disk of radius b and thickness t, mounted on an axle of radius a, which mechanically rotates the disk with angular speed ω in the presence of an orthogonal magnetic induction B. A stationary contact ring with inner radius b and negligible resistance surrounds the rotating disk making good electrical and frictionless contact with it. As shown in the figure, the closed electrical circuit consists of the disk and a load resistor R connected by wires between the axle and the stationary contact ring. (Assume the load resistor R is much greater than the resistance of the disk, the contact ring, and the wires.) A constant magnetic induction \mathbf{B} perpendicular to the disk (parallel to the rotation axis) exists between the radii a and b and is zero elsewhere in the circuit.
(a) $\{4 \mathrm{pts}\}$ Find the current I that flows in the circuit as a function of B, a, b, ω, and R.
(b) $\{2 \mathrm{pts}\}$ What is the magnitude of the current density $J(r)$ in the rotating disc.
(c) $\{2 \mathrm{pts}\}$ What torque would you have to apply to the rotating wheel to keep ω from slowing down.
(d) $\{2 \mathrm{pts}\}$ If σ is the conductivity of copper and t is the thickness of the disk, find the electrical resistance R_{d} of the disk between the radii a and b. Recall that the resistance of a small length $\Delta \ell$ of conducting material with cross sectional area A is $\Delta R=\Delta \ell /(\sigma A)$.

5. A plane-polarized harmonic $\left(e^{-i \omega t}\right)$ plane electromagnetic wave traveling to the right in a homogeneous dielectric medium described by an dielectric constant ϵ_{1}, strikes a second homogeneous dielectric material described by dielectric constant $\epsilon_{2}>\epsilon_{1}$ (see the figure). Assume that both materials have the same magnetic permeability μ_{0} and that the incidence angle is 0° (1.e., the wave is traveling perpendicular to the junction). Assume the incoming wave is polarized in the \hat{x} direction and that its electric field amplitude is E_{0}, i.e., assume the incoming electric field is the real part of

$$
\mathbf{E}=E_{0} e^{i(k z-w t)} \hat{x}
$$

(a) $\{3 \mathrm{pts}\}$ Give the magnetic induction \mathbf{B} associated with the above incoming wave. Make sure your wave satisfies Maxwell's equations, e.g., give k as a function of ω, the direction of \mathbf{B}, and the amplitude of \mathbf{B} as a function of E_{0}.
(b) $\{1 \mathrm{pts}\}$ Give similar expressions for the \mathbf{E} and \mathbf{B} components of the reflected and transmitted waves. Use $E_{0}^{\prime \prime}$ and E_{0}^{\prime} for the respective amplitudes of reflected and transmitted waves.
(c) $\{2 \mathrm{pts}\}$ In general, what conditions must be satisfied at the junction between two materials by the electromagnetic fields $\mathbf{E}, \mathbf{B}, \mathbf{D}$, and \mathbf{H}, if Maxwell's equations are to be satisfied?
(d) $\{2 \mathrm{pts}\}$ Apply these junction conditions to the combined incoming, reflected, and transmitted wave to compute $E_{0}^{\prime \prime}$ and E_{0}^{\prime} as functions of E_{0} and the two dielectric constants ϵ_{1} and ϵ_{2}.
(e) $\{2 \mathrm{pts}\}$ Evaluate the time averages of the Poynting vectors of the incident, reflected, and transmitted waves. Recall that

$$
\begin{array}{r}
\mathbf{S} \equiv \mathbf{E} \times \mathbf{H}, \tag{SI}\\
\mathbf{S} \equiv \frac{1}{4 \pi} \mathbf{E} \times \mathbf{H}
\end{array}
$$

(Gaussian)
The sum of the magnitudes of the reflected and transmitted time averaged Poynting vectors should equal the magnitude of the incident wave's time averaged Poynting vector.
6. Maxwell's equations in 4 dimensions
(a) $\{2 \mathrm{pts}\}$ Write the Maxwell equations in the absence of polarizable materials using 4 -vector notation, making use of the field strength tensor $F_{\mu \nu}$.
(b) $\{4 \mathrm{pts}\}$ Show that the equations of part (a) reduce to the usual form of Maxwell's equations in 3-vector notation.
(c) $\{2 \mathrm{pts}\}$ The Lagrangian density of the EM field is given by

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4 \mu_{0}} F^{\mu \nu} F_{\mu \nu} \tag{SI}
\end{equation*}
$$

or

$$
\mathcal{L}=-\frac{1}{16 \pi} F^{\mu \nu} F_{\mu \nu}
$$

(Gaussian)
Recall that all repeated Greek indices are summed over 4dimensions (1 time and 3 space). Show that the Lagrangian density is invariant under a gauge transformation $A_{\mu} \rightarrow A_{\mu}^{\prime}=$ $A_{\mu}+\partial_{\mu} \alpha(x)$, where α is an arbitrary function of spacetime $x \equiv$ $(c t, \vec{x})$.
(d) $\{2 \mathrm{pts}\}$ If we add an interaction term $\mathcal{L} \rightarrow \mathcal{L}+\Delta \mathcal{L}$ where

$$
\begin{equation*}
\Delta \mathcal{L}=j^{\mu} A_{\mu} \tag{SI}
\end{equation*}
$$

or

$$
\Delta \mathcal{L}=\frac{1}{c} j^{\mu} A_{\mu}, \quad \quad(\text { Gaussian })
$$

to the Lagrangian- where j^{μ} is some spatially bounded and conserved 4-current density- how does the action $I \equiv \int \mathcal{L} d^{4} r$ change under a gauge transformation and do the resulting equations of motion change?

