E & M Qualifier

August 16, 2012

To insure that the your work is graded correctly you MUST:

- 1. use only the blank answer paper provided,
- 2. write only on one side of the page,
- 3. put your alias on every page,
- 4. put the problem # on every page,
- 5. number every page starting with 1 for each problem,
- 6. put the total # of pages you use for that problem on every page,

Use only the reference material supplied (Schaum's Guides).

- 1. A long wire of radius R_{wire} carries a current I and is surrounded by a long hollow iron cylinder. The inner radius of the cylinder is R_i and the outer radius is R_o ($R_{wire} < R_i < R_o$, see the figure, assume the current flows out of the page).
 - (a) (2 pts) Compute the flux of **B** through a rectangular section of the iron cylinder L meters long and $R_o R_i$ wide.
 - (b) (3 pts) Find the <u>bound</u> surface current densities flowing along the inner and outer iron surfaces, respectively K_i^b and K_o^b , and find the direction of these currents relative to the current in the wire.
 - (c) (2 pts) Find the <u>bound</u> volume current density J^b inside the iron.
 - (d) (3 pts) Find **B** at distances $r > R_0$ from the wire. Would this value of **B** be affected if the iron cylinder were removed?

Recall that the magnetization \mathbf{M} is related to the magnetic field strength \mathbf{H} and the susceptibility χ_m by

$$\mathbf{M} = \chi_m^{SI} \mathbf{H} \quad \text{in SI units}$$

$$= \chi_m^G \mathbf{H} \quad \text{in Gaussian units}$$

$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M}) = \mu_0(1 + \chi_m^{SI}) \mathbf{H} \quad \text{in SI units}$$

$$= (\mathbf{H} + 4\pi \mathbf{M}) = (1 + 4\pi \chi_m^G) \mathbf{H} \quad \text{in Gaussian units}$$

For all substances $4\pi\chi_m^G = \chi_m^{SI}$. For iron χ_m is in the range 10 to 1000.

- 2. (a) (3 pts) From Maxwell's Equations, derive the wave equation for ${\bf E}$ with no sources ($\rho=0,{\bf J}=0$) in a homogeneous, isotropic, linear medium of permittivity ϵ and permeability μ .
 - (b) (1 pts) Show that if $\mathbf{E} = E(t, z)\hat{\mathbf{y}}$, the wave equation reduces to

$$\frac{\partial^2 E}{\partial z^2} = \epsilon \mu \frac{\partial^2 E}{\partial t^2}, \quad \text{in SI units}$$

$$\frac{\partial^2 E}{\partial z^2} = \frac{\epsilon \mu}{c^2} \frac{\partial^2 E}{\partial t^2}. \quad \text{in Gaussian units}$$

(c) (4 pts) By introducing the change of variables

$$\begin{array}{lll} \xi &=& t + \sqrt{\epsilon \mu}\,z, & \text{in SI units} \\ \xi &=& ct + \sqrt{\epsilon \mu}\,z, & \text{in Gaussian units} \\ \eta &=& t - \sqrt{\epsilon \mu}\,z, & \text{in SI units} \\ \eta &=& ct - \sqrt{\epsilon \mu}\,z, & \text{in Gaussian units} \end{array}$$

show that the wave equation assumes a form that is easily integrated.

(d) (2 pts) Integrate the equation to obtain

$$E(z,t) = E_1(\xi) + E_2(\eta),$$

where E_l and E_2 are arbitrary functions.

- 3. Two charges $\pm q$ are on opposite sides of a dielectric sphere ($\epsilon = \text{constant}$) as shown in the figure. The three objects are on a common axis, the sphere is of radius a and the two charges are a distance b > a from the sphere's center.
 - (a) (2 pts) Give the form of potential $\Phi(r,\theta)$ inside the sphere (r < a) as a series of Legendre polynomials, $P_{\ell}(\cos \theta)$, with coefficients A_{ℓ} . Give the correct r dependence of each term and do not include ℓ values that vanish from symmetry.
 - (b) (2 pts) Give the form of the potential $\Phi(r,\theta)$ outside the sphere (r > a) as the sum of two terms; one a series of Legendre polynomials with coefficients B_{ℓ} caused by the polarization charges on the dielectric, and the other term caused by the two point charges. In the series part keep only non-vanishing ℓ values and give the correct r dependence of each term.
 - (c) (3 pts) In the outside region where r > a, expand the part of the part of the potential caused by the point charges as a single series in P_{ℓ} . Give two explicit forms of this series, one good for a < r < b and one good for r > b.
 - (d) (3 pts) You do not have to evaluate the constants A_{ℓ} and B_{ℓ} but write down the two sets of equations from which you can determine them (the boundary matching conditions).

- 4. The reflection of a circularly polarized plane wave at a metallic boundary.
 - (a) (2 pts) Give expressions for the **E** and **B** fields of a monochromatic, right circularly polarized plane wave traveling in vacuum. Use rectangular Cartesian coordinates, assume the angular frequency is ω , assume the polarization plane is the x-y plane, and assume the propagation direction is in the positive z direction.
 - (b) (1 pt) Explain in words what is meant by a monochromatic right circularly polarized wave.
 - (c) (2 pts) Rewrite your **E** and **B** fields of part (a) assuming the propagation direction is 30^o above the $\hat{\mathbf{z}}$ direction as shown in the figure. You can use unit vectors $\hat{\mathbf{e}}$ and $\hat{\mathbf{k}}$ in your expressions but be sure to define what they are in terms of the coordinate directions $\hat{\mathbf{x}}, \hat{\mathbf{y}}$, and $\hat{\mathbf{z}}$.
 - (d) (2 pts) If the wave of part (c) strikes a flat perfectly conducting surface at z = 0 it will be reflected. What boundary conditions are satisfied by the combined **E** and **B** fields of the incoming and reflected waves at the z = 0 junction?
 - (e) (2 pts) Give expressions for the reflected **E** and **B** fields. Make sure they satisfy your junction conditions of part (d).
 - (f) (1 pt) Is the reflected wave right or left circularly polarized?

- 5. An infinitely long, uniformly charged wire of radius a and total charge per unit length λ , is at rest on the z-axis of the lab frame.
 - (a) (2 pts) Compute the electric field $\mathbf{E}(x, y, z)$ interior and exterior to the wire in the lab frame by solving Gauss's law in that frame.
 - (b) Complete the next 4 steps to compute $\mathbf{E}'(x', y', z')$ and $\mathbf{B}'(x', y', z')$ in a frame moving in the positive z-direction with speed v.
 - i. (2 pts) Give the Lorentz boost $x'^{\sigma} = L_{\mu}^{\sigma} x^{\mu}$ ($\mathbf{x}' = \mathbf{L}\mathbf{x}$) from the Lab to the moving frame (take $x^0 = ct, x^1 = x, x^2 = y, x^3 = z$).
 - ii. (2 pts) Construct the electromagnetic field tensor $F^{\alpha\beta}$ from the electric field you found in part (a).
 - iii. (2 pts) Use your lorentz boost to compute the electromagnetic field tensor $F'^{\alpha\beta} = L^{\alpha}_{\mu}L^{\beta}_{\nu}F^{\mu\nu}$ ($\mathbf{F}' = \mathbf{LFL^T}$) in the moving frame.
 - iv. (2 pts) From your $F'^{\alpha\beta}$ give the answer to (b).

Hint: Recall that in both SI and Gaussian units $F^{\sigma\mu}=-F^{\mu\sigma}$ and $F^{0i}=-E^{i}$. In Gaussian units $F^{12}=-B^{z}$, $F^{23}=-B^{x}$ and $F^{13}=B^{y}$, but in SI units $F^{12}=-c\,B^{z}$, $F^{23}=-c\,B^{x}$ and $F^{13}=c\,B^{y}$

6. In the absence of polarizable and/or magnetizable material (i.e., only free charges and currents present) Maxwell's equations, in Gaussian units and in the Lorentz gauge, reduce to the inhomogeneous wave equation:

$$\square \left\{ \begin{array}{c} \Phi \\ A^x \\ A^y \\ A^z \end{array} \right\} = \frac{4\pi}{c} \left\{ \begin{array}{c} c\rho \\ J^x \\ J^y \\ J^z \end{array} \right\}, \text{ where } \square \equiv \left(\frac{\partial}{c\partial t} \right)^2 - \nabla^2.$$

A time dependent charge $Q(t) = I_0 t$, $t \ge 0$ is fixed at the origin

of a cylindrical polar coordinate system (ρ, ϕ, z) The charge increases linearly with time because a constant current I_0 flows in along a thin wire attached to the charge on its left, see the figure. Assume the wire carries no current for t < 0, however, at t = 0 a current I_0 abruptly starts flowing in the +z direction and remains constant for $t \geq 0$. Assume the wire remains neutral as the charge at the origin grows. Find the following quantities at time t for points (ρ, ϕ, z) :

- (a) (2 pts) The charge density $\rho(t, \rho, \phi, z)$,
- (b) (2 pts) The current density $\mathbf{J}(t, \rho, \phi, z)$,
- (c) (2 pts) The retarded scalar potential $\Phi(t, \rho, \phi, z)$,
- (d) (4 pts) The retarded vector potential $\mathbf{A}(t, \rho, \phi, z)$.

Hints: Parts (a) and (b) require the use of $\delta(x)$ -functions and Heaviside step functions $\Theta(x) \equiv 1, 0$ respectively for x > 0 or x < 0. The retarded Green's function for the \square operator is:

$$G^{ret}(\mathbf{r}, t; \mathbf{r}', t') = \frac{\delta(t - t' - |\mathbf{r} - \mathbf{r}'|/c)}{4\pi |\mathbf{r} - \mathbf{r}'|},$$

which gives retarded potentials

$$\left(\Phi(t,\mathbf{r}),\mathbf{A}(t,\mathbf{r})\right)^{ret} = \frac{1}{c} \int \frac{\left(c\rho(t-|\mathbf{r}-\mathbf{r}'|/c,\mathbf{r}'),\mathbf{J}(t-|\mathbf{r}-\mathbf{r}'|/c,\mathbf{r}')\right)}{|\mathbf{r}-\mathbf{r}'|} d^3r'.$$

For part (d) you might need the integral

$$\int \frac{dX}{\sqrt{X^2 + a^2}} = \ln(\sqrt{X^2 + a^2} + X).$$