
Classical Mechanics and Statistical/Thermodynamics

January 2024

1. Write your answers only on the answer sheets provided, only on one side of the page.

2. Write your alias (not your name) at the top of every page of your answers.

3. At the top of each answer page write:

(a) The problem number,

(b) The page number for that problem,

(c) The total number of pages of your answer for that problem.

For example if your answer to problem 3 was two pages long, you would label them “Problem 3,
page 1 of 2” and “Problem 3, page 2 of 2”.

4. If the answer to your problem involves units, such as SI or Gaussian units, state which ones you
are using.

5. Use only the math reference provided (Schaum’s Guide). No other references are allowed.

6. Do not staple your exam when done.

7. There are 5 problems but only 4 problems will count to your grade. If you choose to
solve all 5, the problem on which you score the least will be discarded. Please attempt
at least four problems as partial credit will be given.
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Possibly Useful Information

Handy Integrals: ∫ ∞

0
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ex − 1
dx =

π2

6∫ ∞

0
xne−αx dx =
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0
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Geometric Series:
∞∑
n=0

xn =
1

1− x
for |x| < 1

Stirling’s approximation:

n! ≈
(n
e

)n√
2πn or log(n!) ≈ n log(n)− n

Levi-Civita tensor:
ϵijkϵklm = δilδjm − δjlδim

Handy Taylor Series:

log(1 + x) =
∞∑
n=1

(−1)n+1x
n

n

log(1− x) = −
∞∑
n=1

xn

n
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Riemann and related functions:

∞∑
n=1

1

np
≡ ζ(p)

∞∑
n=1

zn

np
≡ gp(z)

gp(1) = ζ(p)

ζ(1) = ∞

ζ(2) = π2

6 = 1.64493

ζ(3) = 1.20206

ζ(4) = π4

90 = 1.08232

∞∑
n=1

(−1)n+1 zn

np
≡ fp(z)

fp(−1) = −ζ(p)

ζ(−1) = − 1
12 = 0.0833333

ζ(−2) = 0

ζ(−3) = 1
120 = 0.0083333

ζ(−4) = 0

Physical Constants:

Coulomb constant K = 8.998× 109 N-m2/C2 ϵ0 = 8.85× 10−12C2/N ·m2

µ0 = 4π × 10−7T m/A electronic charge e = 1.60× 10−19C

electronic mass me = 9.11× 10−31kg Density of pure water: 1.00gm/cm3.

Boltzmann’s constant: kB = 1.38× 10−23J/K Planck’s constant: h̄ = 6.63× 10−34m2kg/s

speed of light: c = 3.00× 108m/s Ideal Gas Constant: R = 0.0820 ℓatm ·mol−1K−1

3



Question 1: For the following problem studying projectile motion near the surface of the earth, assume
an (x,y) coordinate system with gravity acting vertically in the −y direction. Neglect air resistance
throughout.

A projectile is launched at a 45◦ angle with respect to the horizontal and has an initial kinetic energy
E0. When the projectile reaches its maximum height it instantaneously explodes into two fragments with
masses m1 and m2, respectively. The explosion adds an additional amount of mechanical energy E0 to
the system (i.e., the two fragments). After the explosion, the velocity of the fragment with mass m1 is
directed straight down, in the −y direction. For the following questions give all answers in terms of E0,
m1 and m2.

(a) What was the initial speed of the projectile? (1.5 points)

(b) Obtain expressions for the velocities v⃗1 and v⃗2 of the masses m1 and m2 immediately after the
explosion. (4 points)

(c) Show that the maximum value of the ratio of the two masses is m1/m2 = 2. Explain your answer.
(1.5 points)

(d) Assuming m1 = 2m2, how far will each of the two fragments land on the ground from where they
were first launched? (3 points)
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Question 2: Two identical blocks, each of mass m, sit on a frictionless horizontal surface. The blocks
are connected by a spring with force constant k and equilibrium length ℓ0. In the following you may
assume their motion is confined to one dimension.

(a) Defining ℓ as the distance between the masses, show that their relative motion can be described by
a one-dimensional Lagrangian,

L(q, q̇, t) = µ

2
q̇2 − µω2

2
q2,

where we have defined the reduced mass µ = m/2 for the composite system, ω =
√

k/µ and
q = ℓ − ℓ0 is the generalized co-ordinate. What characteristic of this Lagrangian enables you to
deduce that energy is conserved in this system? (3 points)

(b) Derive the corresponding Hamiltonian H(q, p) for the system where q and p are the canonical
position and momentum. In general, when is the Hamiltonian equal to the energy of the system?

(2 points)

(c) For a transformation of the form,

Q = C

(
q − p

µω

)
,

P = C

(
q +

p

µω

)
,

find an expression for C such that this is a canonical transformation. (3 points)

(d) Find the generating function of the second kind, F2(q, P, t) (see table below), that is associated
with the transformation in part (c). Use this to obtain the transformed Hamiltonian H̃(Q,P ) in
terms of the new canonical co-ordinates. (2 points)

Generating function Derivatives

F = F1(q,Q, t) p = ∂F1
∂q P = −∂F1

∂Q

F = F2(q, P, t)−QP p = ∂F2
∂q Q = ∂F2

∂P

F = F3(p,Q, t)− qp q = −∂F3
∂p P = −∂F3

∂Q

F = F4(p, P, t) + qp−QP q = −∂F4
∂p P = ∂F4

∂P
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Question 3:

Figure 1: a) The circular disc of radius R and vanishing thickness s. b) The disc can function as a frictionless
pulley, upon which a string connecting two masses is placed. Gravity acts along the vertical direction as indicated.

Consider a circular disc of radius R and infinitesimal thickness s [see Fig. 1 a)]. The density of the
disc varies with the radial distance from the center as ρ(r) = kr2 where k > 0 is a constant.

(a) Show that the moment of inertia of the disc about its axis of radial symmetry can be expressed in
terms of the total mass M of the disc and the radius as,

I =
2

3
MR2.

Note: You should obtain an expression for the total mass of the disc M as a function of the radius
R and other constants as part of your solution. (1.5 points)

(b) Suppose that the disc is rotating about its axis of radial symmetry at a constant angular velocity.
Using your result in (a), give an expression for the kinetic energy T of the disc in terms of M and
the velocity v of a point at the outer (radial) edge of the disc. (1 point)

For the remainder of the problem, we assume that the disc is converted to function as a frictionless pulley.
A string of fixed length L is run across the pulley and a pair of blocks with mass m1 and m2 are affixed
to each end [see Fig. 1 b)]. We will assume that the string is massless and does not slip on the pulley,
while the masses of the blocks satisfy m1 > m2. The blocks only move in the vertical direction and are
subject to gravity.

(c) Obtain a Lagrangian describing the motion of the pulley-mass system in terms of the generalized
co-ordinate x that is defined to be the vertical distance between the center of the pulley and the
center of the block of mass m1. (2.5 points)

(d) By writing down the Euler-Lagrange equation for x, obtain an expression for the vertical acceleration
of the block of mass m1. Express your result in terms of m1, m2, M and g. (2.5 points)

(e) By computing the tensions T1 and T2 of the string just above the blocks of mass m1 and m2,
respectively, compute the torque acting on the pulley. (2.5 points)
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Question 4:

(a) In your own words, compare and contrast the microcanonical and canonical ensembles. (2.5 points)

For the remainder of this question, consider a classical non-interacting gas of N distinguishable atoms
with mass m confined to a length L in one dimension. In addition to the single-particle kinetic energy
p2/(2m) where p is the momentum, each particle can be in one of two internal states: a ground-state
with energy 0 and an excited state with energy ϵ > 0.

(b) Explain why the canonical partition function of the N particle gas can be written,

QN (T, V,N) = [Q1(T, V )]N ,

where Q1(T, V ) is the partition function of a single atom. (1.5 points)

(c) Using the result of (b), show that

QN (T, V,N) =
LN

hN
(2πmkBT )

N/2
(
1 + e

− ϵ
kBT

)N
.

Hint: Useful integrals can be found page 2 of the exam paper. (3 points)

(d) Finally, use the partition function to show that the specific heat of the gas is

CV = NkB

[
1

2
+

ϵ2

(kBT )2
e

ϵ
kBT

(1 + e
ϵ

kBT )2

]
.

Comment on the behaviour of the specific heat at low temperatures. (3 points)
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Question 5: Conduction electrons in a metal can be well described as a 3D gas of spin-1/2 fermions
(i.e., fermions with spin up or down) with density n = N/V where N is the total number of electrons in
a volume V . The electrons have single particle energies,

ϵ
k⃗
=

h̄2 |⃗k|2

2m
,

where k⃗ is the wavenumber and m the electron mass.

(a) Show that the Fermi energy can be expressed as,

ϵF =
h̄2

2m

(
3π2n

)2/3
.

Qualitatively describe the ground-state configuration of the gas in relation to the Fermi energy.
(2 points)

(b) Show that the ground-state energy density of the electron gas is,

E0

V
=

3

5
(3π2)2/3

h̄2

2m
n5/3.

(2 points)

Real electrons interact via Coulomb repulsion and this can lead to an imbalance in the number of spin up
and down electrons in the ground-state. In the context of our electron gas, this interaction can be captured
by an effective spin-spin coupling that favours states with spins arranged in parallel, corresponding to a
potential energy term,

U = α
N+N−

V
,

added to the Hamiltonian. Here, N+ and N− = N −N+ are the numbers of electrons with spin up and
down, respectively, and α is some constant that characterizes the strength of the interaction.

(c) Show that when the the density of spin up and down electrons is very close, i.e., n+ = N+/V =
n/2+δ and n− = N−/V = n/2−δ with δ ≪ n, the total kinetic energy density can be approximated
to second order in δ as,

Ekin

V
=

E0

V
+

4

3
(3π2)2/3

h̄2

2m

δ2

n1/3
,

where E0/V is the energy density of the non-interacting ground-state of part (a). (3 points)

(d) By also obtaining an expression for the interaction energy in terms of δ and n, show that the electron
gas can lower its total energy by spontaneously magnetizing for a sufficiently strong interaction
α > αc where the critical interaction strength is,

αc =
4

3
(3π2)2/3

h̄2

2m

1

n1/3
.

Discuss how interactions have changed your result for the ground-state in relation to the non-
interacting case of parts (a) and (b). (3 points)
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