
Classical Mechanics and Statistical/Thermodynamics

August 2023

1. Write your answers only on the answer sheets provided, only on one side of the page.

2. Write your alias (not your name) at the top of every page of your answers.

3. At the top of each answer page write:

(a) The problem number,

(b) The page number for that problem,

(c) The total number of pages of your answer for that problem.

For example if your answer to problem 3 was two pages long, you would label them “Problem 3,
page 1 of 2” and “Problem 3, page 2 of 2”.

4. If the answer to your problem involves units, such as SI or Gaussian units, state which ones you
are using.

5. Use only the math reference provided (Schaum’s Guide). No other references are allowed.

6. Do not staple your exam when done.

7. There are 5 problems but only 4 problems will count to your grade. If you choose to
solve all 5, the problem on which you score the least will be discarded. Please attempt
at least four problems as partial credit will be given.
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Possibly Useful Information

Handy Integrals: ∫ ∞

0

x

ex − 1
dx =

π2

6∫ ∞

0
xne−αx dx =

n!

αn+1∫ ∞

0
e−αx2

dx =
1

2

√
π

α∫ ∞

0
x e−αx2

dx =
1

2α∫ ∞

0
x2 e−αx2

dx =
1

4

√
π

α3∫ ∞

−∞
ei a x−b x2

dx =

√
π

b
e−a2/4b

Geometric Series:
∞∑
n=0

xn =
1

1− x
for |x| < 1

Stirling’s approximation:

n! ≈
(n
e

)n√
2πn or log(n!) ≈ n log(n)− n

Levi-Civita tensor:
ϵijkϵklm = δilδjm − δjlδim

Handy Taylor Series:

log(1 + x) =
∞∑
n=1

(−1)n+1x
n

n

log(1− x) = −
∞∑
n=1

xn

n

Riemann and related functions:

∞∑
n=1

1

np
≡ ζ(p)

∞∑
n=1

zn

np
≡ gp(z)

gp(1) = ζ(p)

ζ(1) = ∞
ζ(2) = π2

6 = 1.64493
ζ(3) = 1.20206

ζ(4) = π4

90 = 1.08232

∞∑
n=1

(−1)n+1 zn

np
≡ fp(z)

fp(−1) = −ζ(p)

ζ(−1) = − 1
12 = 0.0833333

ζ(−2) = 0
ζ(−3) = 1

120 = 0.0083333
ζ(−4) = 0

2



Physical Constants:

Coulomb constant K = 8.998× 109 N-m2/C2 ϵ0 = 8.85× 10−12C2/N ·m2

µ0 = 4π × 10−7T m/A electronic charge e = 1.60× 10−19C
electronic mass me = 9.11× 10−31kg Density of pure water: 1.00gm/cm3.
Boltzmann’s constant: kB = 1.38× 10−23J/K Planck’s constant: h̄ = 6.63× 10−34m2kg/s
speed of light: c = 3.00× 108m/s Ideal Gas Constant: R = 0.0820 ℓatm ·mol−1K−1

3



Question 1: A uniform sphere with mass m and radius R is spinning with an angular velocity of ω0

about a horizontal axis. The sphere is initially spinning just above a horizontal table but is then lowered
to be brought into contact with the surface of the table. The sphere experiences a gravitational force
downward and a frictional force from the table with a coefficient of kinetic friction given by µ. The
moment of inertia of a uniform sphere is I = (2/5)mR2.

(a) Assuming that t = 0 when the sphere first contacts the table, show that the sphere begins to roll
without slipping at time,

t =
2ω0R

7µg
.

(3 points)

(b) What is the translational velocity and the rotational velocity of the sphere when it first begins to
roll without slipping? (2 points)

(c) How far will the sphere have travelled from where it was first placed on the table to when it begins
to roll without slipping? (1 point)

(d) In general, the moment of inertia of many uniform objects rotating about their center of mass can
be written as CmR2 where C is some constant, m is the mass and R the radius of the object. This
is true for, e.g., disks, spheres, etc. Show that if the sphere of this problem is replaced by a generic
object with momentum of inertia I = CmR2 (but follows the same sequence), the fraction of energy
remaining when the object begins to roll without slipping is C/(1 + C) and thus for the sphere,
where C = 2/5, the fraction of energy remaining is 2/7. (4 points)
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Question 2: Consider a particle of mass m moving in one dimension, described by the Lagrangian:

L(x, ẋ) = −mv0

√
v20 − ẋ2 + F0x .

Here, ẋ = dx/dt, v0 is a constant with units distance/time and F0 has units of energy/distance.

(a) Determine whether each of the following is a constant of motion for the particle:

i) mechanical energy

ii) canonical momentum

Explain your answer in each case. (2 points)

(b) Show that the corresponding Hamiltonian for the system is,

H(x, p) = v0

√
p2 +m2v20 − F0x .

(2 points)

(c) Use H(x, p) and the associated Hamilton’s equations to sketch a phase portrait for the motion of
the particle (in the x− p plane). (3 points)

(d) Solve for the trajectory of the particle (x(t), p(t)) assuming the initial condition x(0) = p(0) = 0.
Discuss the behaviour of the particle at long times. (3 points)
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Question 3: Consider an insulated, hollow cylinder with cross sectional area A and height H that
is placed upright on a level surface so that the base is completely sealed. The top of the cylinder is open
to the atmosphere, which is assumed to be described by an ideal diatomic gas at a temperature T0 and
pressure P0. You place an insulating disk of mass m and area A (assume it has vanishing thickness) at
the top of the vessel. The disk forms an airtight seal and can slide up and down the cylinder without
friction, but your hand is initially holding the disk without movement. Throughout this problem gravity
is taken to act in the vertical direction (see Fig. 1). A table of equations that may be relevant in the
problem is provided below.

y

g

H
Ideal gas law

Isentropic process

Isobaric process

Isochoric process

Equation Application

Figure 1: (i) The cylinder of Question 3. The direction of gravitational acceleration, g, is indicated. (Left) Initially
the disk is held in place at the top of the cylinder, forming an airtight seal. (Right) After the disk is lowered (a)
or dropped (b)-(c), it moves a distance y. (ii) Some thermodynamic equations that may be relevant.

(a) Assume that you slowly lower the disk until it is perfectly kept in place by the pressure exerted by
the gas confined in the cylinder. Obtain expressions for the final pressure Pf and temperature Tf

of the confined air.

i) the final pressure Pf and temperature Tf of the confined air,

ii) the final distance y travelled by the disk from the top of the cylinder.

Your expressions should be given in terms of the initial temperature and pressure of the gas, T0

and P0, as well as other relevant parameters. (3 points) .

(b) Instead of slowly lowering the disk, we could simply let it drop from its initial stationary position
at the top of the cylinder and compress the gas. Discuss the physical principle (e.g., a conservation
law etc.) you would use to calculate the distance y corresponding to the maximal compression of
the confined gas (at which point the disk will be instantaneously at rest)? You are not required to
carry out the calculation to determine y. (2 points)

(c) Assume that we do drop the disk from its initial stationary position at the top of the cylinder. In
an idealized world, the disk would oscillate up and down forever as it compresses the gas and then
rebounds. In reality, we know that some energy will be lost to the surrounding atmosphere and
some transferred into the gas inside the cylinder. Assume that once the disk has come to complete
rest exactly half of the energy has been transferred into the gas inside the cylinder. Compute the
final distance y the disk has compressed the gas. (3 points)

(d) Give a physical argument explaining why you expect the distance y obtained in part (c) should
be larger or smaller than (a). You do not need to obtain or explicitly compare the expressions to
answer this question! (2 points)
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Question 4: Consider a one-dimensional chain of N localized sites. Each of these sites is occupied by
a single polymer that can be in one of three configurations: It can be “straight” with energy 0 or it can
“bend” to the left or right with energy ϵ > 0 (see Fig. 2).

N sites

Figure 2: A chain of polymers in 1D that can either be orientated straight upright with energy 0 or bent (to the
left or right) with energy ϵ.

(a) By computing the total number of microstates as a function of total energy E and number of sites
N , show that the entropy is given by,

S(E,N) = NkB

[
E

Nϵ
log(2)− E

Nϵ
log

(
E

Nϵ

)
−
(
1− E

Nϵ

)
log

(
1− E

Nϵ

)]
.

To obtain this expression you should assume N ≫ 1. (3 points)

(b) Show that the total average internal energy as a function of temperature and site number is,

E(T,N) =
2Nϵ

eϵ/(kBT ) + 2
.

Examine your expression in the limit of low and high temperature and discuss the physical meaning
of your results. (3.5 points)

(c) Compute the heat capacity of the chain. Sketch your result as a function of temperature and
comment on its behaviour. (3.5 points)
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Question 5: Consider a gas of N non-interacting spin-1 bosons in a three dimensional box of volume V .
In an applied magnetic field B = Bẑ, the single particle energy of each boson is assumed to be given by,

Ep,Sz =
p̂2

2m
− µ0BSz,

where µ0 = eh̄/mc with m the mass of each boson and Sz = −1, 0,+1 is the spin-projection along ẑ.
In this problem you will find the following integral useful:

gn(y) =
1

Γ(n)

∫ ∞

0

xn−1

y−1ex − 1
dx.

For small z it can be shown that gn(z) ≈ z + z2/2n +O(z3).

(a) Show that the total number of particles in each of the spin states, i.e., N−1, N0 and N+1, is given
by,

NSz =
V

λ3
g3/2(ze

µ0BSz/kBT ),

where λ =
√

2πh̄2

mkBT is the thermal de Broglie wavelength. Hint: You will find it useful to know that

Γ
(
3
2

)
=

√
π
2 . (2 points) .

(b) Write down the expression for the magnetization M = µ0(N+1 −N−1). Use this to show that the
zero-field susceptibility is given by,

χ =
∂M

∂B

∣∣∣∣
B=0

=
2µ2

0V

kBTλ3
g1/2(z).

Hint: You will need to use that y dgm(y)
dy = gm−1(y). (3 points)

(c) Show that the susceptibility given in part (b) collapses to Curie’s law in the classical limit,

χ =
2µ2

0N

3kBT
.

Justify any approximations you make. (3 points)

(d) In this system a Bose-Einstein condensate (BEC) forms below a critical temperature Tc. Identify
which single-particle state becomes macroscopically occupied by the BEC and give an expression
for the chemical potential that is valid for T < Tc. You should not need to compute Tc in your
answer. (2 points)
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