
Mechanics and Statistical Mechanics Qualifying Exam

Fall 2013
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Problem 1: (10 Points)

Imagine a race between different objects rolling or sliding down a simple inclined plane.
Let the mass of each object be M, the angle of the inclined plane be Θ, and the height be
H, where the center of mass of all the objects change by H over a race. You will consider a
cylinder with walls of negligible thickness and puck (short solid cylinder) in this problem.
Assume the rolling objects roll without slipping.

a. Determine the velocity of a sliding puck (short cylinder) at the bottom of the inclined
plane. (3 Points)

b. Determine the velocity of a round, symmetrical, smooth rolling object whose moment
of inertia is I = αMR2, where α is a geometrical factor and R is the radius. (3 Points)

c. Show which wins, a sliding or rolling puck? (2 Points)

d. Discuss how your result depends on α, M and R. Use your answer to determine if a
rolling puck or tube of mass M and negligible thickness would win a race down the incline.
(2 Points)
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Problem 2 (10 Points):

A yo-yo with a mass of m and moment of inertia I falls straight down and spins due to
gravity. The string unwinds from the yo-yo around an axle of radius a. The other end of
the string is attached to an ideal spring with spring constant k. Define x as the extension
of the spring measured with respect to its unstretched length.

x

θ

a

a. Using the generalized coordinates x and Θ write the Lagrangian for this system.
(2 Points)

b. Derive the Lagrange equations of motion. (2 Points)

c. Derive a differential equation that describes the oscillation of the spring while the yo-yo
is falling down and unwinding. (2 Points)

d. What is the oscillation frequency of the spring while the yo-yo is falling down and
unwinding? (2 Points)

e. Consider the limit of a thin axle (ma2 � I) and solve the differential equation found in
(c) for the variable x. (2 Points)

f. Explain in words the motion described by the equation found in (e). (1 Points)
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Problem 3 (10 Points):

A spherical pendulum consists of a particle of mass m that is in a gravitational field ~g
and is constrained to move on the surface of a sphere of radius `. Use the polar angle θ
(measured from the downward vertical) and the azimuthal angle φ.

a. Derive the Lagrangian for this system. (2 Points)

b. Derive the Hamiltonian for this system. (2 Points)

c. Find the Hamiltonian equations of motion. (1 Points)

d. Consider the system is undergoing uniform circular motion in φ at constant polar angle
θo. Assuming small variations in θ, expand the Hamiltonian in θ to second order around
θ = θo. (4 Points)

e. Show that the motion in θ is simple harmonic with angular frequency given by:

ω2 =
g

` cos θo
(1 + 3 cos2 θo).

(1 Points)
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Problem 4 (10 Points):

The diesel engine uses the Otto cycle. Below is the P-V diagram for this process. Assume
a monatomic ideal gas.

a. Find the work done during each cycle. (3 Points)

b. Find the heat exchanged each cycle. (3 Points)

c. What is the efficiency of this engine? (3 Points)

d. To produce work, which way does the cycle operate? Clockwise or counter clockwise in
the diagram. (1 Points)
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Problem 5 (10 Points):

An electron confined to a 1D ring of radius R in a perpendicular magnetic field B has
energy levels

E(m,φ) =
h̄2

2mR2

(

m− φ

φ0

)2

= ε

(

m− φ

φ0

)2

where φ = πR2B is the magnetic flux through the ring, φ0 is the magnetic flux quantum
(φ0 = e/h̄c) and m is the angular momentum quantum number, m = 0,±1,±2, . . .. In this
problem we will consider a set of N rings, and neglect the spin of the electron.

a. In the high temperature limit (ε ≡ h̄2

2mR2 << kT ) determine approximate expressions

for:

1. The canonical partition function, Z(T,N,B). (1 Point)

2. The internal energy, U(T,N,B). (1 Point)

3. The magnetization, M ≡ ∂U
∂B

. (2 Points)

b. In the low temperature ( h̄2

2mR2 >> kT ) and weak field (−φ0/2 < φ < φ0/2) limit

determine approximate expressions for:

1. The canonical partition function, Z(T,N,B). (1 Point)

2. The internal energy, U(T,N,B). (1 Point)

3. The magnetization, M ≡ ∂U
∂B

. (If your result is quite complicated, make sure that

you keep only the leading term in part (i) above. (2 Points)

c. Are your results similar or different? Explain either why they are similar or why they
differ. (2 Points)
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Problem 6 (10 Points):

Consider a system consisting of a large number N of distinguishable, noninteracting par-
ticles. Each particle has only two (nondegenerate) energy levels: 0 and ε > 0. Let E/N
denote the mean energy per particle in the thermodynamic limit N → ∞.

a. What is the maximum possible value of E/N if the system is not necessarily in thermo-
dynamic equilibrium? (1 Point)

b. What is the value of E/N if the system is in equilibrium at temperature T? (4 Points)

c. Explicitly take the low (T → 0) and high (T → ∞) limits of your result of part a). Sketch
your results. (2 Points)

d. Find the entropy per particle s = S/N . (2 Points)

e. Explicitly take the T → 0 and T → ∞ limits of your result of part d). Explain.
(2 Points)
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