Math 2123 - Math Center Worksheet Section 5.1

1. A water tank drains at a rate of $r(t)=-2 t$ gallons per minute, t minutes after the plug is pulled.
a. Sketch a graph of $r(t)$ over the interval from $t=0$ to $t=6$. Label the axes.
b. The units on the width of the region between $r(t)$ and the t-axis are
c. The units on the height of the region between $r(t)$ and the t-axis are
d. The exact area of the region between $r(t)$ and the t-axis from $t=0$ to $t=6$ is
e. Interpret the area in context.
2. The rate of change in car sales (in hundred cars per month) is modeled by $C(t)$, where t is the number of months after December 2001.
a. What does the area of the region between the graph of C lying above the t-axis and the t-axis represent?
b. What are the units on
i. the width of this region?
ii. the height of this region?
iii. the area of this region?

Math 2123 - Math Center Worksheet Section 5.2

1. A small college is looking at data on the sale of tickets to their home football game. The following data show the rate of change in the sale of tickets for a given price.

Ticket price (dollars)	10	15	20	25	30	35	40
ROC of Sales (tickets per dollar	183	138	103	79	58	45	33

a. Write a complete exponential model for the data.
b. Use 3 right rectangles to estimate the change in sales when the ticket price increases from $\$ 10$ to $\$ 40$.
c. Use 5 midpoint rectangles to approximate the area between the graph of the model you generated in part a and the price axis on the interval [15, 30].
d. Write an interpretation of your answer to part c.
2. Suppose that the rate of flow of revenue for a company can be modeled by $\square \mathrm{r}(\mathrm{x})=2.58 \mathrm{x}^{3}-10.44 \mathrm{x}^{2}-5.62 \mathrm{x}-15.95$ million dollars per year where x is the number of years after 1990 .
a. Use the idea of a limit of sums to calculate $\int_{2}^{4} r(x) d x$. Continue doubling N, the number of rectangles, in the following table until the approximation is accurate to the nearest tenth.

N	Midpoint Approximation
10	

$$
\int_{2}^{4} r(x) d x \cong
$$

\qquad
b. Write an interpretation of your answer to part a.

Math 2123 - Math Center Worksheet Section 5.4

1. Evaluate the following indefinite integrals:
a. $\int \frac{1}{9 t^{3}} d t$
b. $\int e^{2} d y$
c. $\int 5 \sqrt{x} d x$
2. The rate of change of the number of Campbell Soup employees from 1990 through 1998 can be described by $s(t)=-0.689 t^{2}+4.665 t-7.107$ thousand employees per year, t years after 1990. In 1993, there were 23,800 people employed by Campbell Soup. Recover the model for the number of Campbell Soup employees.
