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Abstract 

Consumption of natural gas as the cleanest fossil fuel in the world is increasing dramatically. The 
natural gas market is very volatile, which results in a high level of risk for both consumers and 
producers. A more precise forecast tool enables us to hedge the financial risk. In this study, we 
attempt to predict natural gas spot price in the long term in the U.S. market using 
ARIMA/GARCH time series model. The results indicate, with a 95% confidence level, that the 
price will oscillate between 1.5 and 3.2 $/MMBtu through 2016.  
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In the last century, natural gas has been vented as a dangerous byproduct of the oil wells. 

Dissolved natural gas, which causes several problems in oil transportation, should be separated 

in order to reduce the transportation cost. For several decades, natural gas has imposed an extra 

cost to the oil industry and has been released to the environment. Natural gas is mainly 

composed of methane as well as some amounts of other heavier hydrocarbons, including ethane, 

propane, and butane. Some contaminants, such as sour gases (e.g. CO2 and H2S) and water 

contained in the natural gas should be removed from the stream before injecting it into a 

pipeline. By increasing the energy demand and its price, natural gas substituted other fuels, such 

as oil and coal. Since storage and transfer of natural gas in gaseous phase was not feasible for a 

long time, it used to be consumed locally near to the production fields. By development of 

pipelines and new transportation technologies, such as LNG and CNG, natural gas can be 

conveniently delivered to markets and remote areas across the world. 

Since natural gas is the cleanest and the most abundant fossil fuel compared to other 

fossil resources in the world, by improving transportation technology and decreasing the 

handling costs, it is becoming the most popular source of energy globally. Focusing on 

environmental concerns and new regulations, power plant owners will opt to switch their fuel 

from coal and oil products to natural gas increasing the demand of natural gas even more in the 

future. Moreover, the rapid change in the economy of China needs a large amount of energy 

(U.S. EIA | IEO, 2013). Also, the global energy demand is increasing as well as the portion of 

demand of natural gas in the total energy consumption (BP, 2014).  

However, new technologies, and explorations enabled us to produce more natural gas from tight 

and unconventional reservoirs to compensate the huge demand of energy in future.  
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In the early 1990s, natural gas financial markets started to operate when the regulations in 

the U.S. was adjusted in order to liberate the market, as well as national grid for natural gas 

transportation was expanded. Due to the extent of this evolution, reliable infrastructure for 

natural gas trading and availability has been implemented around the country.  

In general the price of energy, natural gas in particular, is very volatile. For the investors who 

plan to build million-dollar power plants, the incoming cash flow involves a high degree of 

uncertainty because the fuel price flocculation brings instability in revenues. The price 

oscillation in short time denotes the risk of this commodity, which makes the investors worried 

about the fuel price as a major part of the operation costs.  

Natural gas price prediction is important, as it will help to have a better picture of the 

market in the future and enables us to monitor the factors that might affect the price movement. 

There are several technics to model and predict the natural price trend. Since the natural gas 

price change is random, the stochastic process could explain the nature of this oscillation.  

In addition, the seasonal nature of natural gas prices introduces further variables that can 

describe these fluctuations. Another method that could explain this random trend is the time 

series techniques. The price could be modeled based on various auto-regression methods. The 

artificial neural network came into the picture when computers became more popular. The use of 

fast computers enables us to run and train a neural network with high speed and accuracy. 

Literature Review 

Hotelling (1931) could be recognized as the first researcher who introduced a model to 

describe the behavior of exhaustible resources, such as natural gas. This model is known as 

Hotelling’s rule; which states that the producers of a non-renewable commodity (e.g. Natural 

gas) tend to sell their commodities when the benefits from the sale are more than the benefits of 
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keeping it.  In the other words, the extraction cost and the present value of the commodity in one 

side, and the cost of the storage and future value of the commodity in other side, which are 

related by interest rate, will determine the proficiency of keeping or selling the commodity. It is 

assumed that the markets are efficient and the owners are motivated by the profit. This rule does 

not consider the emergence of new technologies and resources that may be explored and 

discovered in the future.  Pindyck (1978) has optimized Hotelling’s model for oil and gas case by 

taking the oil and gas reserve increment by exploration into account. An MIT Energy Lab report 

(MacAvoy & Pindyck, 1974) revealed the problem of natural gas shortages with econometrics 

models; which noted that the ceiling price was set by the Federal Power Commission and did not 

represent the price of the supply and demand equilibrium.   

Bopp (1990) and Hsieh (1990) applied econometrics model, and Pilipovic (2007) 

implemented time series models to predict natural gas prices. Doris and Economides (1999) 

applied both econometrics and neural network models to forecast the natural gas price in the 

short term. Inikori, et al. (2001) investigated the effect of oil and natural gas prices on the oil and 

gas industry by establishing a linear regression model, which forecasted said prices.  

Two forecasting models were developed by Nogales, et al. (2002) to predict the daily price 

of natural gas. They used the time series analysis approach to establish dynamic regression and 

transfer function for the Spain and California Markets, which resulted in the average errors of 

5% and 3% respectively. Agbon and Araque (2003) applied chaos time series analysis and a 

nonlinear fuzzy neural network to predict the oil and gas prices. Ogwo, et al. (2007) developed 

an equitable pricing model to predict the natural gas price. Mishra (2012) modeled the natural 

gas price with time series as well as a nonparametric approach to forecast the price. Hu and 

Trafalis (2011) developed a new kernel for a neural network model to predict the natural gas 
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price. Panella, et al. (2012) suggested a new approach to implement the neural network to model 

a nonlinear regression time series associated with energy commodity prices. Yi & Wang (2013) 

addressed the effect of oil prices on the international natural gas price using wavelet based 

Boltzmann cooperative neural network. Ekweanua, et al. (2014) found a robust correlation 

between the natural gas price and production, import, and export amount by means of a neural 

network model. 

Several approaches and models have been proposed and applied by different researchers in 

order to predict natural gas prices in the long or short term, although each method and model 

does possess its own advantages and disadvantages. The multivariate models that take several 

variables into account are more accurate than the univariate models. However the external 

variables often themselves need to be predicted. For example, a predictor model for natural gas 

price, which is a function of oil price, struggles with the same uncertainty in oil price.  We made 

the decision to model the natural gas monthly prices with a univariate nonlinear time series 

model, ARIMA/GARCH, to predict the price without any variable but with its lags.    

Methodology 

It is our objective in this paper to find a model to fit and predict the natural gas spot price at 

the Henry Hub. Natural gas price is a random variable that follows a stochastic process with a 

random trend. Initially, we define and bring attention to a few important words, which are 

pertinent in our modeling process.  

Random Variables 

A random variable is a measurable function of 𝑋𝑋 from the probability space Ω into the set of 

real numbers ℝ known as the state space. Three modifications are needed to make this definition 

more precise (Gallager, 2013): 
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1. The mapping 𝑋𝑋(𝜔𝜔) must have the property that {𝜔𝜔 𝜖𝜖 Ω ∶ 𝑋𝑋(𝜔𝜔) ≤ 𝑥𝑥} is an event for each 
𝑥𝑥 𝜖𝜖 ℝ.  

2. Every finite set of random variables 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 has the property that for each 
𝑥𝑥1 𝜖𝜖 ℝ, … , 𝑥𝑥𝑛𝑛 𝜖𝜖 ℝ, the set {𝜔𝜔 𝜖𝜖 Ω ∶ 𝑋𝑋1(𝜔𝜔) ≤ 𝑥𝑥1, … ,𝑋𝑋𝑛𝑛(𝜔𝜔) ≤ 𝑥𝑥𝑛𝑛} is an event. 

3. 𝑋𝑋 might be undefined or infinite for a subset of Ω that has 0 probability. In other words, 
the probability of events {𝑋𝑋 = ±∞} is zero. 

 

Stochastic Process 

In probability theory, a stochastic process is a family of random variables 𝑋𝑋 from the 

probability space Ω into ℝ indexed by time set 𝑡𝑡 𝜖𝜖 𝕋𝕋, which could be denoted  by 

{𝑋𝑋(𝑡𝑡,𝜔𝜔): 𝑡𝑡 𝜖𝜖 𝕋𝕋,𝜔𝜔 𝜖𝜖 Ω}. We shall simplify the notation to {𝑋𝑋(𝑡𝑡): 𝑡𝑡 𝜖𝜖 𝕋𝕋} or {𝑋𝑋𝑡𝑡: 𝑡𝑡 𝜖𝜖 𝕋𝕋} when the 

time variable t is continuous (𝕋𝕋 =  ℝ) or is a discrete variable (𝕋𝕋 =  ℕ) (Prabhu, 2007). In a 

stochastic or random process, there are some ambiguities: even if the initial condition (or starting 

point) is known, there are several directions in which the process may proceed. 

Time Series 

The time series is a stochastic process of random variable X indexed by time. 𝑋𝑋𝑡𝑡 is a 

notation used for discrete parameter process and 𝑋𝑋(𝑡𝑡) is a notation for continuous parameter 

process. In this research, we are dealing with the discrete parameter process of time series. 

Stationary Time Series 

A time series is stationary if its statistical parameters such as mean and variance remain 

constant for all the time steps. 

Autocorrelation and Partial Autocorrelation 

Autocorrelation is a correlation of time series with itself. This function measures the 

correlation between the variable 𝑋𝑋𝑡𝑡 and its lag 𝑋𝑋𝑡𝑡−𝑘𝑘 which is a real value between -1 and 1 where 

-1 implies a complete negative correlation and 1 is a complete positive correlation while 0 

indicates no correlation between the variables. In a similar way, partial autocorrelation is a 

https://en.wikipedia.org/wiki/Probability_theory
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correlation between  𝑋𝑋𝑡𝑡 and  𝑋𝑋𝑡𝑡−𝑘𝑘 when  𝑋𝑋𝑡𝑡−𝑘𝑘 comes into pictures and improves the correlation 

to 𝑋𝑋𝑡𝑡. On the other hands, partial autocorrelation of a variable in k order is the amount of 

correlation between the variable and its kth lag that was not explained by the correlations at all 

lower orders lags. 

Monte Carlo Simulation 

Monte Carlo methods are a wide range of computational algorithms that rely on the 

repeated random sampling or output of a random-base function to obtain the best numerical 

results. In a stochastic process or time series simulation, the functions generate different results 

in different iterations. They are often used in physical, mathematical and statistical problems and 

are most useful when it is difficult or impossible to use the other mathematical methods.  

ARMA Model 

Autoregressive Moving Average process, ARMA (r, m), is a combination of Moving 

Average MA (m) and Autoregressive AR (r) processes. Suppose {𝑋𝑋𝑡𝑡;  𝑡𝑡 =  ±1, ±2, … } is a 

causal, stationary, and invertible process. Therefore, it satisfies the following equation: 

 

𝑋𝑋𝑡𝑡 − 𝜇𝜇 − 𝜙𝜙1 (𝑋𝑋𝑡𝑡−1 − 𝜇𝜇) −⋯− 𝜙𝜙𝑟𝑟  (𝑋𝑋𝑡𝑡−𝑟𝑟 − 𝜇𝜇)

= 𝑎𝑎𝑡𝑡 − 𝜃𝜃1 𝑎𝑎𝑡𝑡−1 − ⋯− 𝜃𝜃𝑚𝑚 𝑎𝑎𝑡𝑡−𝑚𝑚 

𝑋𝑋𝑡𝑡 − 𝜇𝜇 − 𝜙𝜙1𝐵𝐵1 (𝑋𝑋𝑡𝑡 − 𝜇𝜇) −⋯− 𝜙𝜙𝑟𝑟 𝐵𝐵𝑟𝑟 (𝑋𝑋𝑡𝑡 − 𝜇𝜇)

= 𝑎𝑎𝑡𝑡 − 𝜃𝜃1𝐵𝐵1 𝑎𝑎𝑡𝑡 − ⋯− 𝜃𝜃𝑚𝑚 𝐵𝐵𝑚𝑚 𝑎𝑎𝑡𝑡 

𝝓𝝓(𝐵𝐵)(𝑋𝑋𝑡𝑡 − 𝜇𝜇) = 𝜽𝜽(𝐵𝐵)𝑎𝑎𝑡𝑡 

Eq. 1 

Another expression for ARMA (r, m) model is 

 𝑋𝑋𝑡𝑡 − 𝜇𝜇 −�𝜙𝜙𝑖𝑖  𝑋𝑋𝑡𝑡−𝑖𝑖

𝑟𝑟

𝑖𝑖=1

= 𝑎𝑎𝑡𝑡 −�𝜃𝜃𝑖𝑖  𝑎𝑎𝑡𝑡−𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 Eq. 2 

https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Random
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Mathematics
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ARIMA Model 

The Autoregressive Integrated Moving Average, ARIMA (r, d, m), process of orders r, d, 

and m is a process, 𝑋𝑋𝑡𝑡, whose differences (1 − 𝐵𝐵)𝑑𝑑𝑋𝑋𝑡𝑡 satisfy an ARMA (r, m) model that is a 

stationary model in which d is a non-negative integer. We use the following notation: 

 𝝓𝝓(𝐵𝐵)(1 − 𝐵𝐵)𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜽𝜽(𝐵𝐵)𝑎𝑎𝑡𝑡 Eq. 3 

where all the roots of 𝜙𝜙(𝑧𝑧) = 0 and 𝜃𝜃(𝑧𝑧) = 0 are outside of the unit circle, and 𝜙𝜙(𝑧𝑧) and 𝜃𝜃(𝑧𝑧) 

have no common factors. Parameter d in the ARIMA model represents the dth difference of 𝑋𝑋𝑡𝑡 to 

find a stationary time series. Assume that 𝑋𝑋𝑡𝑡 is not stationary, then we can reproduce a new time 

series with differencing the original time series such as 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑡𝑡−1for d = 1 and (𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑡𝑡−1) −

(𝑋𝑋𝑡𝑡−1 − 𝑋𝑋𝑡𝑡−2) for d = 2 and so on until a stationary time series is obtained. 

ARIMA (0, 1, 0) is the famous random walk model as follows: 

 𝑋𝑋𝑡𝑡 = 𝜇𝜇 + 𝑋𝑋𝑡𝑡−1 Eq. 4 

ARCH Model 

To address the conditional volatility behavior, (Engle, 1982) introduced the Autoregressive 

Conditional Heteroscedasticity (ARCH) model. ARCH (q) is defined based on an ARMA model 

in which the term 𝑎𝑎𝑡𝑡 is a function of conditional variance. Let 𝜎𝜎𝑡𝑡|𝑡𝑡−1
2  be the conditional variance 

of 𝑋𝑋𝑡𝑡, and suppose 

 
𝑎𝑎𝑡𝑡 = 𝜎𝜎𝑡𝑡|𝑡𝑡−1𝜀𝜀𝑡𝑡 

𝜎𝜎𝑡𝑡|𝑡𝑡−1
2 = 𝛼𝛼0 + 𝛼𝛼1𝑎𝑎𝑡𝑡−12 + ⋯+ 𝛼𝛼𝑞𝑞𝑎𝑎𝑡𝑡−𝑞𝑞2  

Eq. 5 

In this equation, 0 ≤ 𝛼𝛼1 < 1 and 𝜀𝜀𝑡𝑡’s are independent, identically distributed, zero mean and unit 

variance random variables that are independent of  𝑎𝑎𝑡𝑡−𝑘𝑘,𝑘𝑘 = 1,2, … . We can formulate the 

ARCH (q) model as follows: 
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⎩
⎪
⎨

⎪
⎧

𝑎𝑎𝑡𝑡 = 𝜎𝜎𝑡𝑡|𝑡𝑡−1. 𝜀𝜀𝑡𝑡

𝜎𝜎𝑡𝑡|𝑡𝑡−1
2 = 𝛼𝛼0 + �𝛼𝛼𝑖𝑖  𝑎𝑎𝑡𝑡−𝑖𝑖2

𝑞𝑞

𝑖𝑖=1

 Eq. 6 

 

GARCH Model 

GARCH (p, q) is a generalized ARCH (p, q) model introduced by (Bollerslev, 1986) and 

(Taylor, 2007) which includes the lagged terms of the conditional variances. This model is 

defined as 

 𝜎𝜎𝑡𝑡|𝑡𝑡−1
2 = 𝛼𝛼0 + 𝛼𝛼1𝑎𝑎𝑡𝑡−12 + ⋯+ 𝛼𝛼𝑞𝑞𝑎𝑎𝑡𝑡−𝑞𝑞2 + 𝛽𝛽1𝜎𝜎𝑡𝑡−1|𝑡𝑡−2

2 + ⋯+ 𝛽𝛽𝑝𝑝𝜎𝜎𝑡𝑡−𝑝𝑝|𝑡𝑡−𝑝𝑝−1
2  Eq. 7 

The compact form of GARCH (p, q) is 

 

⎩
⎪
⎨

⎪
⎧

𝑎𝑎𝑡𝑡 = 𝜎𝜎𝑡𝑡|𝑡𝑡−1. 𝜀𝜀𝑡𝑡

𝜎𝜎𝑡𝑡|𝑡𝑡−1
2 = 𝛼𝛼0 + �𝛽𝛽𝑗𝑗  𝜎𝜎𝑡𝑡−𝑗𝑗|𝑡𝑡−𝑗𝑗−1

2

𝑝𝑝

𝑗𝑗=1

+ �𝛼𝛼𝑖𝑖 𝑎𝑎𝑡𝑡−𝑖𝑖2

𝑞𝑞

𝑖𝑖=1

 Eq. 8 

Results and Discussion 

In this work, we considered the natural gas monthly spot price at Henry Hub as a time series 

and attempted to fit the best model of ARIMA/GARCH by using the Econometrics Toolbox™ of 

MATLAB® software. The data was collected from U.S. Energy Information Administration’s 

website (EIA, 2016). 

Estimation of Parameter d 

To implement the time series models described above on the natural gas spot market, we 

need to make sure that the given time series is stationary. For non-stationary time series, we 

should apply either a linear or non-linear transformation to achieve a stationary trend. As the first 

step, we must calculate the autocorrelations (ACF) and partial autocorrelation functions (PACF) 
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of the time series that indicate the stationary or non-stationary behavior of the variable. The 

second step is to use standardized tests such as KPSS (Kwiatkowski, et al., 1992), and 

augmented Dickey-Fuller tests (Perron, 1988) in order to confirm the stationary behavior of the 

variable statistically. In order to convert a non-stationary time series into a stationary version we 

must make a new time series in terms of differences of one lag. This process defines the 

differencing parameter “d” in ARIMA model. 

 

Figure 1. Autocorrelation and Partial Autocorrelations functions for Henry Hub Spot Price 

As shown in Figure 4, the autocorrelation functions for original time series (i.e.  Henry 

Hub spot price) do not converge to zero and have significant values for a large number of lags. 

They decay into the range very slowly and could not reach the domain even after 38 lags, but in 

the partial correlation graph after the second lag they become significantly smaller. It can be 

inferred from this behavior that this variable is not stationary. Therefore, we generated the new 

time series by differencing the natural gas price that is illustrated in Figure 5.  
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The KPSS and ADF tests results, summarized in Table 1, confirm our explanations of the 

AFC and PAFC graphs that the spot price trend is not a stationary time series but its first 

difference is. Therefore, we use the first difference (i.e. d =1) to establish an ARIMA-GARCH 

model. 

Table 1. Result Summary for Stationary Tests 

Variable Test Stat. Crit. 

Value 

Likelihoo

d Log 

Significanc

e Level 

MSE 

Spot Price KPSS 3.26 0.1460 -508.48 95% 5.110 

ADF -1.25 -

1.9421 

-271.49 95% 0.643 

First Difference of 

Price 

KPSS 0.03 0.1460 -272.115 95% 0.612 

ADF -

15.42 

-

1.9421 

-270.200 95% 0.643 

 

Another method for estimation of the optimum number of differences is to find the 

minimum standard deviation of the produced time series, which is demonstrated in  Figure 6. 

This method also leads us to d = 1. 
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Figure 2. Standard Deviation of Differenced Time Series 

 

Estimation of Parameters r and m 

Figure 7, which illustrates the ACF and PACF for the model variable, indicates that the 5th and 

9th lags of the time series have a close relationship with the variable. The negative values of these 

significant lags in PACF denote that we have a slightly over-differenced variable, which could 

be corrected by considering the lags as MA lags. Therefore, we may choose ARIMA (5,1,9) in 

which the coefficient for the lags are zero except the 5th and 9th lags. These relationships are not 

strong and the values are marginal. In order to determine the lags, several possibilities were 

tested by AIC and BIC; the most important results are listed in the Table 2 and Table 3 below. 
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Figure 3. Autocorrelation and Partial Autocorrelations functions for First Difference of Spot 

Price 

In order to find the optimum parameters of the ARIMA model, we defined various 

combinations of the lags and examined Akaike and Bayesian information criteria for those to 

choose the best model (Box, et al., 2015). According to the AIC results in Table 2, the ARIMA 

(9, 1, 9) model with 5th and 9th lags in both AR and MA section is the optimum model. The BIC 

results in Table 3 suggest choosing the ARIMA (5, 1, 9) model with 5th lag in AR and 9th lag in 

MA section. As the results of both methods for these two models are very close, we prefer to 

select the ARIMA (5,1,9) model that has two parameters less than the other model. A simpler 

model is always better if the accuracy is not significantly decreased. 
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Table 2. Akaike Information Criteria Results for Different Lags in ARIMA Model 

  MA Lags 

  0 5 5, 9 9 1-9 
A

R
 L

ag
s 

0 549.92 545.76 536.65 539.56 547.53 

5 545.39 545.25 536.20 535.41 548.71 

5, 9 536.23 538.10 531.86 535.16 550.21 

9 540.16 537.04 537.46 542.08 548.56 

1-9 547.76 549.07 544.18 547.59 540.43 

 

Table 3. Bayesian Information Criteria Results for Different Lags in ARIMA Model 

  MA Lags 

  0 5 5, 9 9 1-9 

A
R

 L
ag

s 

0 556.77 556.04 550.36 549.85 585.26 

5 555.68 558.97 553.34 549.13 589.87 

5, 9 549.94 555.24 552.44 552.31 594.79 

9 550.45 550.76 554.61 555.80 589.71 

1-9 585.52 590.22 588.76 588.44 609.02 

 

Estimation of ARCH/GARCH parameters 

As shown in Figure 8, the residuals and squared residuals change along the time axis. In 

order to examine the heteroscedasticity effect, Ljung-Box Q-test was applied. The stat was 84.95 

that compare to the critical value (31.41) confirms the illustration on the figure. These changes in 

statistical parameters led us to define a GARCH model for fitting the variances.  
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Figure 4. Squared Residuals during the Time 

Figure 9 indicates that we have a significant arch effect in 2 lags of the modeling 

variable. The number of lags is the summation of ARCH and GARCH lags (p+q) together. We 

define GARCH (1, 1) for variance modeling and now our model is completed as ARIMA (5, 1, 

9) / GARCH (1, 1). There exists a number of statistical tests, such as the Engle’s test, which 

indicates the conditional heteroscedasticity of the time series (Engle, 1982).The stat of the Engle 

test for the first and second lags are 40.52 and 51.22 respectively, which compares to the critical 

values of 3.84 and 5.99, infers that the ARCH/GARCH effect is available.  
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Figure 5. ACF and PACF of Squared First Difference of HH Spot Price 

 

Table 4 shows the model parameters’ values, standard errors, and t statistics associated 

with the parameters. Plugging the parameters in the model results in: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡−1 − 0.0279 − 0.0567 (𝑋𝑋𝑡𝑡−5 − 𝑋𝑋𝑡𝑡−6) + 𝑎𝑎𝑡𝑡 + 0.2205 𝑎𝑎𝑡𝑡−9

𝑎𝑎𝑡𝑡 = 𝜎𝜎𝑡𝑡|𝑡𝑡−1. 𝜀𝜀𝑡𝑡

𝜎𝜎𝑡𝑡|𝑡𝑡−1
2 = 0.0499 + 0.5288 𝜎𝜎𝑡𝑡−1|𝑡𝑡−2

2 + 0.4712 𝑎𝑎𝑡𝑡−12

 Eq. 9 

 

Table 4. Model's Parameters 

Parameter Value Std. Error t Statistic 

ARIMA Const. -0.0279 0.0230 -1.2162 

AR(5) -0.0567 0.0447 -1.2677 

MA(9) -0.2205 0.0344 6.4023 
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GARCH Const. 0.0499 0.0204 2.4433 

ARCH(1) 0.4712 0.0725 6.5023 

GARCH(1) 0.5288 0.0653 8.0958 

 

To validate and check the model, we ran the model starting from 1999 until the last date 

of our available data.  

We first established the model for the early data, then later rebuilt it for the emerging date 

over time, as well as forecasted the price in the subsequent step. The results are illustrated in 

Figure 10. In Figure 10 (a), the dotted red line represents the forecasted prices, while the solid 

blue line represents the actual historical data. In Figure 10 (b) the residual values are illustrated. 

The residual values indicate that the model is outperforming when new data enters the model. 

The residual values converge to zero over time, however the model has poor performance at the 

spikes. 

Finally, with a confidence level of 95%, we ran the model to predict the price for 12 

months in the future. The results are demonstrated in Figure 11. The prediction shows a 

descending trend until it reaches the lowest point in a price of 2 $/MMBtu on May 2016, and 

then starts to move upward until it hits the price of 2.3 $/MMBtu on September 2016. It also 

shows that the natural gas price will fluctuate between 1.5 and 3.2 $/MMBtu in 95% level of 

confidence.  
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Figure 6. (a) Model Back Test Results, (b) Residual Value for Model 

 

Figure 7. Model Forecasting for 12 Months in Future 
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Conclusions 

The applied model here, the combination of ARIMA (5, 1, 9) and GARCH (1, 1) models, is 

a univariate time series model; it explains the history of a time series using its lag’s variables. 

The univariate models do not need extra variables to predict the future prices and this helps us to 

avoid the uncertainty involved in those new variables.    

The ARIMA (5, 1, 9) / GARCH (1, 1) model, shows that the natural gas price is likely to 

increase slightly in the future, which is not significant and cannot exceed 3.2 $/MMBtu even in 

the optimistic case. The forecast graph indicates that in 2016, the natural gas price tends to 

remain above 1.5 $/MMBtu. In other words, by 95% level of confidence, the natural gas price 

will fluctuate between 1.5 and 3.2 $/MMBtu. The probable value for the price is within 2 – 2.3 

$/MMBtu, with the highest value in May 2016 and the lowest value in September.  

The back test’s resulting residuals demonstrate that by introducing new data in the model, which 

affects the variance model, the prediction error will decrease. Based on the measured errors, we 

can conclude that the model has accurate predictions, with the exception of the spikes.  
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