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Abstract

Ecological communities are being impacted by global change worldwide.

Experiments are a powerful tool to understand how global change will

impact communities by comparing control and treatment replicates.

Communities consist of multiple species, and their associated abundances

make multivariate methods an effective approach to study community

compositional differences between control and treated replicates.

Dissimilarity metrics are a commonly employed multivariate measure of

compositional differences; however, while highly informative, dissimilarity

metrics do not elucidate the specific ways in which communities differ.

Integrating two multivariate methods, dissimilarity metrics and rank abun-

dance curves (RACs), have the potential to detect complex differences

based on dissimilarity metrics and detail the how these differences came

about through differences in richness, evenness, species ranks, or species

identity. Here we use a database of 106 global change experiments located

in herbaceous ecosystems and explore how patterns of ordinations based

on dissimilarity metrics relate to RAC-based differences. We find that com-

bining dissimilarity metrics alongside RAC-based measures clarifies how

global change treatments are altering communities. We find that when

there is no difference in community composition (no distance between cen-

troids of control and treated replicates), there are rarely differences in

species ranks or species identities and more often differences in richness or

evenness alone. In contrast, when there are differences between centroids

of control and treated replicates, this is most often associated with differ-

ences in ranks either alone or co-occurring with differences in richness,

evenness, or species identities. We suggest that integrating these two multi-

variate measures of community composition results in a deeper under-

standing of how global change impacts communities.

KEYWORD S
centroids, data synthesis, dispersion, dissimilarity metrics, rank abundance curves,
richness

INTRODUCTION

Given the pressing concern of global change impacts
on ecological communities (Franklin et al., 2016), there is
an explosive growth of experiments studying global change.
For example, globally distributed experiments alone
(e.g., Borer et al., 2014; Henry & Molau, 1997; Yahdjian
et al., 2021), such as the Nutrient Network, Drought-NET,
and the International Tundra Experiment, result in 100s of
experiments worldwide. A key aspect of global change
experiments—to understand the impacts of global change
on biodiversity—presents a challenge because studying bio-
diversity is complex, and there is no agreed upon best
approach (Avolio et al., 2015; Hillebrand et al., 2018;

Magurran, 2016; McGill et al., 2015). Two key aspects of
biological community data are the species present and their
associated abundances (Avolio et al., 2019; Foster &
Dunstan, 2010). Univariate measures, such as species rich-
ness, boil all this complexity down to simply how many spe-
cies are present, while most multivariate measures consider
species identities and their abundances (Foster &
Dunstan, 2010). Not surprisingly, multivariate measures
have been shown to be more sensitive than richness to
detecting experimental impacts on plant communities
(Komatsu et al., 2019).

One common multivariate method is to use dissimi-
larity metrics, such as Bray–Curtis dissimilarity, to
compare biological communities (Buckley et al., 2021;
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Legendre & Anderson, 1999; Legendre & Legendre, 2012).
A benefit of this approach is that it summarizes complex
community data into interpretable numbers—creating a
scale with which to compare the similarity of biological
communities. Another benefit is that these dissimilarity
measures can be visualized in ordinations, typically called
multivariate community space (Figure 1a) (Legendre &
Legendre, 2012; McCune & Grace, 2002). When compar-
ing two treatments, such as control and treated replicates,
there are two aspects that can be reported: the distance

between the centroids (representative of overall differences
in community composition) (Anderson, 2001) and the
dispersion of points (replicates) around the treatment
centroid (representative of community variability among
replicates) (Anderson, 2006) (Figure 1a).

Dissimilarity-based measures are useful for visualizing
and detecting community changes over time or difference
over space. However, ordinations do not clearly detail how
community composition is different between treatments,
and RACs have been suggested to be a link between dis-
similarity measures and specific community composition
differences (Avolio et al., 2015, 2019). RACs are a type of
species abundance distribution (McGill et al., 2007) that
plots a species’ abundance versus its abundance rank in a
community (Figure 1b). Most work on RACs has been on
quantifying the shape of the curve (e.g., Ulrich
et al., 2010); however, important information is gained
when attention is also paid to species identity (Mac
Nally, 2007). When accounting for species identity, RACs
can be used to compare two communities and detail all
possible compositional differences (Figure 1b) (Avolio
et al., 2019). Two communities can differ in richness (only
measures the number of species, and ignores species iden-
tity and abundances), evenness (only measures distribu-
tion of abundances among species, ignores species
identity), species identity (only measures species shared,
and ignores abundances), and ranks (considers both spe-
cies identities and their abundances) (Figure 1b). Thus,
integrating RAC-based differences alongside dissimilar-
ity-based measures of difference might be a powerful way to
understand the impacts of experimental treatments on eco-
logical community composition.

Avolio et al. (2015) presented evidence of six patterns,
hereafter scenarios, of dissimilarity-based multivariate
differences (Figure 2) that are found in global change
experiments. These six scenarios consider both differ-
ences in centroid means of replicates in a treatment and
dispersion of replicates around the centroid in a treat-
ment (Figure 1a). Next, Avolio et al. (2015) suggested
using RACs to understand what about community
composition was different (Figure 1b), and outlined
hypotheses for each of the six scenarios on how the
communities differ between control and treatments
(Table 1; Figure 2). Avolio et al. (2015) hypothesize that
Scenario 1 (no difference in composition or dispersion)
corresponds with no difference in richness, evenness,
ranks, or species identities. They hypothesized Scenario 2
(no difference in composition but an increase in
dispersion) and Scenario 3 (no difference in composition
and a decrease in dispersion) were being driven by
changes in rare species only, because compositional
differences must be subtle for there to be no differ-
ences in centroids. They hypothesized that Scenario 4

F I GURE 1 Different methodological approaches to study

community compositional differences. (a) Dissimilarity-based measures

assess differences between centroids and the dispersion of points around

the centroid. (b) Rank-abundance curve-based measures compare the

richness, evenness, ranking of species, and species composition

differences. Each colored point represents a species and S denotes the

species richness. Figure modified from Avolio et al. (2019).
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(a difference in composition with no change in disper-
sion) could not be the result of differences in richness
or evenness alone, because differences in centroid

means would necessitate differences in ranks or species
identities. Finally, they hypothesized Scenario 5
(a difference in centroids and an increase dispersion) and

F I GURE 2 Hypotheses of what mechanisms of compositional difference underlie patterns of dispersion and centroid differences. This

figure is modified from Avolio et al. (2015); each scenario is numbered in red and matches the text accordingly.

TAB L E 1 Hypothesized relationships between RACs and dissimilarity-based community patterns between control and treated

replicates (differences in centroid and dispersion).

Scenario
Multivariate community

pattern

RAC differences

Richness Evenness Ranks Species identity

Scenario 1 = composition, = dispersion No No No No

Scenario 2 = composition, " dispersion Yes Yes Yesa Yes

Scenario 3 = composition, # dispersion Yes Yes Yesa Yes

Scenario 4 Δ composition, = dispersion No No Yesb Yes

Scenario 5 Δ composition, " dispersion No No Yesc Yes

Scenario 6 Δ composition, # dispersion No No Yesd Yes

Note: For each dissimilarity-based scenario, Avolio et al. (2015) hypothesized whether differences in one aspect of the RAC alone would likely give rise to that
pattern, and our unit of consideration is each replicate. Please note that these differences are not mutually exclusive, meaning multiple aspects can be different

simultaneously.
Abbreviation: RAC, rank abundance curve.
aWill occur only if the response is limited to rare species.
bWill occur only if the same species respond similarly in all replicates.
cWill only occur if different rare species become dominant across replicates.
dWill only occur if the same species become dominant across replicates.
Source: Reprinted with modifications from Avolio et al. (2015).
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Scenario 6 (a difference in centroid means and a decrease
in dispersions) required differences in ranks or species
identities but that an increase in dispersion would occur
when different species become highly abundant in
replicates, and a decrease in dispersion would occur when
the same species became highly abundant in replicates
(Avolio et al., 2015).

Our goal is to explore how dissimilarity-based scenarios
of community responses to experimental treatments are
related to differences in RACs by testing the hypotheses
presented in Avolio et al. (2015). For these analyses, we used
the CoRRE database (Community Responses to Resource
Experiments; www.corredata.weebly.com), which enabled
us to compare control versus treatment community compo-
sitional differences across 106 experiments worldwide.

METHODS

Database

The CoRRE database is a collection of global change
experiments that manipulate at least one plant resource:
CO2, water, and nutrients (see Appendix S1: Table S1 for
a list of experiments). Not all treatments in each experi-
ment are required to be resource manipulations, and
thus, there are non-resource treatments such as warming
and herbivory. Additionally, each experiment in the data-
base has species abundance data for every species
recorded in each replicate, at least 3 years of data, and a
minimum of four replicates per treatment; however, data
collection methods vary by experiment. All replicates are
assigned as either control or a treatment. The experiments
included in this analysis ranged from 183 to 1568 mm
mean annual precipitation and from �12 to 22�C mean
annual temperature. For these analyses, we made
control–treatment comparisons for each treatment within
an experiment for each year of data, resulting in 2831
control–treatment comparisons. Komatsu et al. (2019) and
Avolio et al. (2021) reported how plant communities
responded to global change drivers; here we focus on how
RAC-based measures are related to dissimilarity-based
measures of community differences.

RAC-based measures of community
differences

There are four RAC-based measures of community com-
positional differences (Figure 1b)—differences in richness,
evenness, rank, and species identity—which are detailed
in Avolio et al. (2019). Briefly, richness difference is a pro-
portional measure that ranges from �1 to 1 and is the

difference in the number of species between the control
and treated plots divided by the total number of species in
the control and treated plots. Evenness difference ranges
from �1 to 1 and is the difference in evenness measured
using Evar (Smith & Wilson, 1996) between control and
treated plots. “Rank difference” ranges from 0 to 0.5 and is
the average difference in rank for each species between
control and treated plots divided by the total number of
species in treated and control plots. Species identity differ-
ence ranges from 0 to 1 and is the difference in species
identity (or turnover) between two samples only, removing
richness differences caused by species nestedness
(Baselga, 2010; Carvalho et al., 2012).

Statistical analysis

All analyses were performed in R (R Core Team, 2002)
using an α of 0.05, using data archived on Enivronmental
Data Initiative (Avolio, 2022a) and code archived on
Zenodo (Avolio, 2022b). We chose to conduct analyses for
each year separately because we are interested in the rela-
tionships between measures of community composition
rather than global change effects per se, and this way we
have the greatest possible control–treatment comparisons
to detect patterns. To investigate patterns of community
differences using dissimilarity metrics, we calculated the
difference in community composition and dispersion for
each treatment in an experiment between control and
treatment plots for all years of an experiment using
Bray–Curtis dissimilarity in the multivariate_difference()
function in library(codyn) (Avolio et al., 2019; Hallett
et al., 2020). We also determined whether there were signif-
icant differences between control and treatment centroids
using the adonis() function and differences in dispersion
around the centroids using the betadisper() function in
library(vegan) (Oksanen et al., 2019), again based on
Bray–Curtis dissimilarity. We corrected for multiple com-
parisons within each dataset, adjusting the p-value for the
total number comparisons including four RAC difference
measures, number of years, and number of treatments
using Benjamini–Hochberg correction (Benjamini &
Hochberg, 1996) with p.adjust() in R. For example, if an
experiment had four treatments plus a control and
five years of data, we corrected for 80 comparisons (4 RAC
distance measures � 4 treatment–control comparisons
� 5 years). When there was a significant difference in dis-
persion between controls and treated plots, we noted
whether the treatment had either greater or less dispersion
than control plots, using the output from multivariate_
difference(). Depending on whether there was a significant
difference in centroids (p value from adonis <0.05) or dis-
persion (p value from betadisper <0.05) (Figure 2), and

ECOSPHERE 5 of 11

 21508925, 2022, 10, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4249 by U

niversity O
f O

klahom
a, W

iley O
nline L

ibrary on [18/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.corredata.weebly.com


whether dispersion increased or decreased, we classified
patterns of differences in centroids and dispersion
according to the six scenarios outlined in Avolio et al.
(2015). Thus, the different scenarios only reflect patterns
based on dissimilarity-based multivariate measures.

To link these dissimilarity-based metrics of differ-
ences between control and treatment plots with differ-
ences in RACs, we calculated the RAC differences
(richness, evenness, rank, and species identity) between
control and treated plots for each year of an experiment
using the RAC_difference() function in library(codyn).
Specifically, we were interested in whether differences
between control and treated plots were significantly
different from what would be expected from just natural
heterogeneity, which we calculated as differences among
control plots only. To determine the difference in control
and treated plots, each control plot was compared with
each treatment plot for all treatments in the experiment;
because most experiments were not blocked, we did not
account for blocks in this analysis. We then took the
average of the control–treatment differences for each
control plot in each treatment. Thus, if there were six
control plots and six treatment plots, for each control plot
the average difference between it and each treatment
plot was calculated, resulting in n = 6. We repeated this
analysis, but for the control plots only, as a comparison
for natural heterogeneity among control plots for each
year of an experiment. For each control plot, we calculated
the average of how different it was from all other control
plots. Thus, similar to the control–treatment comparisons,
if there were six control plots, for each control plot the
average difference between it and each control plot was
calculated, resulting in n = 6. We then ran t tests between
control–treatment difference versus control–control differ-
ence for each treatment for each year of the experiment.
We again corrected for multiple comparisons for each
dataset using the Benjamini–Hochberg method. We binned
these responses as significant (p < 0.05) or not, with signifi-
cant effects demonstrating that the control–treatment dif-
ferences were more different than the control–control
differences. We first looked at whether each RAC-based
measure alone was different for each scenario and then
combined these measures to encompass all the possible
combinations. Because Avolio et al. (2015) hypothesized
that differences in richness and evenness alone could not
result in a difference between centroids, we first combined
these two measures only, and then combined them with
differences in ranks and differences in species identities.
Finally, we combined differences in ranks and species
identities with differences in richness and/or evenness.

We hypothesized that rare species drive changes
in dispersion when there is no concurrent change in
community centroids (Scenarios 2 and 3). To test this

hypothesis, we re-ran the adnois(), betadisper(), and
multivariate_difference() functions excluding rare species.
Rare species were defined as those species that have less
than 5% relative cover, averaged over all control plots for
all years of the experiment. If the hypothesis is correct,
the percent of studies that fit those scenarios would
decrease with rare species removed. Finally, to test
whether the same or different species were becoming
more abundant in Scenarios 5 and 6, we used the
abundance_difference() function in codyn to compare
the treatment with the control plots. For each species,
we calculated the difference in relative abundance
between treatment and control plots. We then calculated
the proportion of treatment plots where a species increased
by at least 20% in their relative abundance relative to the
control plots (similar results were obtained with a 10%
increase). If the same species was increasing in many/most
plots, similar to the hypothesis for Scenario 6, this would
be a high proportion. In contrast, if different species were
increasing in different replicates, similar to the hypothesis
for Scenario 5, this would be a lower proportion. We
performed a t test to study the difference in proportion of
treatment plots a species became dominant in Scenario
5 versus Scenario 6, expecting it to be higher in 6 than 5.

RESULTS

Linking multivariate scenarios to
RAC-based measures

Scenario 1 (= composition, = dispersion)

This scenario was the most common scenario (Figure 3).
We hypothesized that when no community differences
were detected based on multivariate measures, there would
also be no differences in richness, evenness, ranks, or spe-
cies identity of control and treated replicates. For the most
part, we find support for this hypothesis, as we detected the
fewest control–treatment differences with measures based
on RACs (Figure 4). The most common control–treatment
differences were in richness or evenness only (Figure 4).
However, there was some mismatch, as we detected signifi-
cant control–treatment RAC differences in 20% of compari-
sons, suggesting that some control–treatment differences
are occasionally not detected by multivariate measures.

Scenarios 2 (= composition, " dispersion) and
3 (= composition, # dispersion)

Scenarios 2 and 3 rarely occurred (Figure 3). We hypothe-
sized that Scenarios 2 and 3 were driven by rare species.

6 of 11 AVOLIO ET AL.
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When we removed rare species, there was no change in
the percent of studies that fit Scenario 2 and an increase
to 7% of the number of control–treatment comparisons
that fit Scenario 3. Thus, we found no evidence that these
scenarios are being driven by rare species; in fact, rare
species appear to dilute the ability of betadisper() to pick
up significant decreases in treatment plot dispersions
(Scenario 3). For Scenario 2, most cases involved

differences in species ranks either alone or co-occurring
with other measures (Figure 4). For Scenario 3, most cases
exhibited differences in richness with a few others
showing differences in species identities co-occurring with
other measures (Figure 4). Interestingly, while both
Scenarios 2 and 3 reflect community differences between
treated and control replicates, again, there was a mismatch
between what was detected by RAC measures. When dis-
persion was significantly different, measures based on
RACs detected significant differences only 49% of the time
for Scenario 2 and only 27% of the time for Scenario 3.

Scenario 4 (Δ composition, = dispersion)

Scenario 4 was the second most common multivariate sce-
nario of control–treatment differences detected (Figure 3).
When there were only differences in centroid means
between control and treated replicates, there were most
often differences in ranks co-occurring with richness or
evenness differences, and less commonly with any one
measure alone (Figure 4). Generally, there was agreement
between multivariate and RAC measures of community
differences; RAC differences were detected in 85% of
the studies with significant control–treatment centroid
differences.

F I GURE 4 For each RAC difference measure alone and in combination, the percent of studies that found differences between control

and treated replicates based t tests. We binned community differences as differences in richness (R), evenness (E), rank (Ra), and species

identity (S) alone, then differences in richness and evenness only (R + E), rank differences co-occurring with any combination of richness

and evenness (Ra + R and/or E), species identity difference co-occurring with any combination of richness and evenness (S + R and/or E),

and finally, ranks and species identity difference co-occurring with any combination of richness and evenness (Ra + S + R and/or E).

Scenarios (1–6) are denoted in the upper left corner of each panel. RAC, rank abundance curve.

F I GURE 3 For each scenario, the percentage of times it was

observed out of all 2831 control–treatment comparisons.

ECOSPHERE 7 of 11
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Scenarios 5 (Δ composition, " dispersion) and
6 (Δ composition, # dispersion)

Scenarios 5 and 6 were also uncommon (Figure 3).
Scenario 5 was most associated with differences in
ranks co-occurring with other RAC differences, while
Scenario 6 was most associated with differences in
ranks and species identity differences co-occurring with
differences in richness and evenness (Figure 4). There
was also the strongest agreement between detecting sig-
nificant differences based on dissimilarity measures
versus RAC-based measures; RAC-based measures
detected at least one aspect of control–treatment differ-
ences: 95% of the time for Scenario 5 and 92% of the
time for Scenario 6. Avolio et al. (2015) hypothesized
that the difference between Scenarios 5 and 6 was
dependent on the proportion of replicates in which the
same species increased in abundance. For Scenario
5, when there is divergence, it was hypothesized that a
species would become abundant in a small proportion
of treatment replicates. In contrast, it was hypothesized
that in Scenario 6, when there is convergence, the same
species would become abundant in many of the treat-
ment replicates. We found evidence for both hypothe-
ses, where similar species became dominant in only
25.7% � 0.3% of replicates in Scenario 5, whereas simi-
lar species became dominant in significantly more rep-
licates (59% � 2.2%) in Scenario 6 (t = �14.75;
p < 0.001).

DISCUSSION

Gaining insights into how biodiversity is impacted by
global change is a top research priority (O’Connor
et al., 2021), and numerous studies have pointed to the
necessity of including both species identity and their
abundances in our attempts to understand community
changes (Gotelli & Colwell, 2001; Heip et al., 1998;
Hill, 1973; Wilsey et al., 2005). Experiments are an impor-
tant tool for studying global change (Schlesinger, 2006),
and here, we compare and integrate two different
methods for studying multivariate community composi-
tional differences between control and treated
replicates—dissimilarity metrics (and their ordinations)
(Anderson et al., 2006; Bray & Curtis, 1957) and RACs
(Avolio et al., 2019; Foster & Dunstan, 2010). We assessed
relationships between scenarios of community composi-
tional differences based on dissimilarity metrics with
compositional differences based on RACs. Overall, we
find support for the hypotheses put forth by Avolio et al.
(2015). For example, differences in richness and evenness
alone rarely resulted in differences in centroids. Further,

we found intuitive links between dissimilarity-based sce-
nario of control–treatment differences and RAC-based
measures of community differences.

When comparing control and treatment replicates, if
there is no difference between their centroids (Anderson
et al., 2008), one would conclude there is no composi-
tional difference between control and treatment commu-
nities (Scenarios 1–3; Figure 2). Overall, when there was
no difference between control–treatment centroids, we
found many fewer control–treatment differences based
on RACs. Differences in dispersion were associated with
all RAC-based measures of community composition
differences except species differences alone. Interestingly,
we found much fewer significant control–treatment dif-
ferences based on RAC-based measures, demonstrating
that dispersion is a subtle aspect of community
difference. Detecting differences in variance is important
for ecological properties (Benedetti-Cecchi, 2003), and
dissimilarity metrics appear to be most sensitive to
detecting these differences.

When there are differences in control–treatment
centroids (Scenarios 4–6; Figure 2), one can conclude
that there are compositional differences between these
communities. Avolio et al. (2015) hypothesized that
rarely would richness or evenness alone result in differ-
ences in centroids, which we confirmed. Richness has
been recognized as an insensitive measure of commu-
nity compositional differences (Magurran, 2016), with
evenness less investigated. We found differences in cen-
troids were mostly associated with differences in ranks
either alone or co-occurring with other measures of dif-
ferences, such as richness, evenness, or species identity.
Shifts in the rank order of species in a community is an
underappreciated mechanism by which community
composition can change (Jones et al., 2017), in compari-
son to species identity differences and turnover. In the
context of global change, while species migrations will
occur as species track their more ideal environmental
conditions (Neilson et al., 2005), for terrestrial plant spe-
cies, this will be a slow process (Aitken et al., 2008;
Jump & Penuelas, 2005). Instead changes in local com-
petitive conditions will result in different species hierar-
chies as species increase or decrease in dominance.
Thus, paying attention to shifts in ranks may be a more
important process on shorter time scales than shifts in
species identities. By contrast, we found that differences
between control and treatment communities were rarely
the result of species identity differences. Dissimilarity
metrics have been used as a proxy for compositional dif-
ferences, or turnover (Magurran et al., 2010); however,
our findings here suggest that compositional differences
inferred from ordinations based on Bray–Curtis dissimi-
larity rarely reflect species identity differences and
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instead reflect differences in ranks (Avolio et al., 2019).
Instead, different indices that focus on turnover may be
necessary to directly study species identity differences
(Vellend, 2001).

The number of ways to study community composition
is large and increasing. Here, we demonstrate that
ordination patterns based on dissimilarity metrics, a com-
mon approach to comparing two or more communities,
intuitively reflect underlying community compositional
differences. This link between RACs and dissimilarity
measures will hopefully yield insights into mechanisms
underlying compositional responses of communities to
global change. For example, knowing that differences
in ranks are an important process, studies can then
investigate which species have different ranks and try to
pinpoint the mechanisms associated with these differ-
ences. One method may be to use rank clocks to visualize
which species are undergoing the most drastic shifts in
abundance (Collins et al., 2008). Our work stresses the
importance of utilizing multiple measures of community
differences to holistically study biological communities
from a variety of angles. This will provide more detailed
management targets and predictions for cascading effects
of altered community composition on ecosystem function.
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