Portable Drilling Machines for Creating Small Water Supplies in Bedrock

John Cherry, Amanda Pierce, Beth Parker and Robert Ingleton

School of Engineering

CHANGING LIVES IMPROVING LIVE WaTER Conference University of Oklahoma October 24, 2011

Global Distribution of Mountains

Mountains Are Formed of Rock

Water is Supplied from Fractures

Problem Statement

- Hundreds of millions of mountain dwelling people worldwide live without access to safe drinking water
- Areas are often remote and not accessed by roads
- Drinking water is commonly unsafe due to bacteria from human and animal waste.

How can these people gain access to safe drinking water?

Fecal Contamination of Springs in Mountainous Southwest China

Derek E Chitwood, PhD International Health Resources Paper Presented: AWRA meeting Albuquerque NM, 2007

Poorly Protected Springs

Results of Water Survey Example of Springs contaminated by leachate from rice patties

- July 2006 (Patty Flooded)
 [E. coli] = 65/100 ml
- Nov 2006 (Patty Dry)
 [E. coli] = 19/100 ml
- Feb 2007 (Patty Dry)
 [E. coli] = 5/100 ml
- May 2006 (Patty Dry)
 [E. coli] = 22/100 ml

Village Hand Dug Well

One low yield well may support multiple families

U of G Research Program Relevant to 'Wells in Mountains'

- Nature of fracture networks and groundwater flow in bedrock
- Mountain hydrogeology
- Creation of water wells using portable drills

Leaky Mountain Conceptual Model for Seeps and Springs

People Live as High up in the Mountains as there are Springs to Provide Water

Dense Fracture Network Shallow Water Table

Organizations Involved in Mountain Development Research

- International Mountain Society
- International Centre for Integrated Mountain Development, Kathmandu, Nepal
- Consortium for the Sustainable Development of the Andean Ecoregion, Lima, Peru
- Mountain Research Initiative, Bern, Switzerland
- Interacademic Commission for Alpine Studies, Bern, Switzerland
- Centre for Mountain Studies, Perth College, University of the Highlands and Islands, Perth, Scotland
- Food and Agriculture Organization of the United Nations, Rome, Italy
- University of Central Asia, Bishkek, Kyrgyz Republic
- Centre for Development and Environment, University of Bern, Switzerland

What do Canada and China Have in Common?

Both have been unable to provide water wells in remote areas inhabited by aboriginal people

Wealthy Countries Are Unable to Provide Safe Drinking Water to Remote Communities on Bedrock

Why?

This particular type of safe drinking water problem requires technologically soft, lowcost but sophisticated solutions not easily delivered/managed by government bureaucracies

Goal of Well Design Well is sealed through "contaminated zone" and draws water from the "clean zone" Contaminated **Groundwater Zone** Clean **Groundwater Zone**

Problem Solution: Portable Drills For Bedrock

Why are these drills available?

- Small percussion drills have been developed for drilling in developing countries
- Gasoline-driven core drills developed for mineral exploration industry

Portable Drills for Wells in Bedrock

Size Manual

-arger

- **Complexity** Auger-jetting with percussion
 - Percussion: Water4 Inc.

Very soft rock only

Gasoline Engines

- Percussion: Consallen Forager Soft Rock
- Rotary Coring:
 - Shaw
 - Winkie
 - Hydradrill

All types of rock

Portable Drills for Wells in Bedrock

Manual

- Auger-jetting and percussion
- Percussion: Water4

Gasoline Engines

- Percussion: Consallen Forager
- Rotary Coring:
 - Shaw
 - Winkie
 - Hydradrill

Criteria for Mountain Drilling Equipment

- Capable of rock drilling to grater than 50ft
- Diameter of hole 3" down to 1"
- Capable of angled drilling
- Transportable by people
- Lowest possible cost
- Easily maintained

Shaw Portable Core Drill (lowest cost) www.backpackdrill.com

Core Diameter: 0.81" Bore Diameter: 1.04"or 1.52" New: 1-5/8" and 2" Depths: 20 to 35'

Winkie Drill *(intermediate cost)* <u>www.minex-intl.com</u> (sole manufacturer)

Core Diameter: 1" Hole Diameter: ~2" Depths: up to 100'

Fred Wink (1914-2007) Inventor of the Winkie Drill

Larger Portable Drill Used for Mineral Exploration

- Drilling capabilities of 400ft of more
- Modifications possible to suite different needs

 Vancouver Company Hydracore and a Chinese affiliate are potential suppliers of equipment

U of G Program for testing portable drills

Two locations:

Sandstone: Santa Suzanna Field Laboratory near Simi, California

Dolostone: Rockwood conservation area near U of G

Questions about the drills

- How deep can they drill?
- How fast?
- What is maximum diameter of hole?
- How portable?
- How reliable?

Shaw Backback Drill

Approximate cost of complete system ~ 5000\$

Shaw Portable Core Drill Shaw Tool Ltd. 10160 Oak Ridge Road Yamhill, Oregon 97148

Shaw Field Trial Rockwood Dolostone

Shaw Field Trial: Sandstone May 2010

SSFL sandstone requires reinforced core barrel

General Winkie Drill Set-Up

Eden Mills, Ontario

water supply for drill (approx. 2-3 gpm)

garden hose (gravity feed)

water tank

tray

Honda motor & Bronco pump unit adjustable relief

k water supply to Winkie

Core Retrieved

Ground Surface

Infiltration of surface pollutants through soil and unsaturated zone

Shallow Groundwater zone potentially contaminated by surface pollutants

Deep Groundwater Zone with clean Water

PVC Pipe surrounded by flexible fabric 'shroud' is installed into the drilled hole with the 'shroud initially empty.

The perforated part of the PVC pipe which permits water to flow into the well is in the 'clean' portion of the groundwater zone

Need for the 'Shroud'

No Shroud

Injected grout pushes outward into formation along fractures potentially disrupting local flow system

With Shroud

Grout is contained and more natural flow conditions maintained

Close ups of the 'shroud'

Installation of 'shrouded' well

Narrow tube for grout injection

Grout inflates the fabric 'shroud' and pushes it against the borehole wall

Well completion (with pump handle)

Grout filled shroud forms a tight seal through the length of the 'contaminated' groundwater zone

Clean water pumped into well Rice Paddy (source of nitrates and bacteria)

Unshrouded Well

Rice Paddy (source of nitrates and bacteria)

Shrouded Well

Blasting to Increase Well Yield

Connection of hydraulically active fractures

Villages in Need of Clean Water Supply

View across the Nu River Valley from one village to another in southwestern Yunnan

> Terracing and Farming upslope of village

> > Village

Cell Phone Works Everywhere

The End

Thank you.