Low cost water purification for developing countries and humanitarian assistance

Matteo D'Alessio^a, Bunnie Yoneyama^b, Edwin Colon-Rivera^b, Cheryl Ishii^b, and Chittaranjan Ray^a

Nebraska Water Center

2015 University of Oklahoma International WaTER Conference September 21-23, 2015 Norman, OK, USA

Motivation

Providing a consistent and reliable supply of potable water in the aftermath of a disaster is a challenge

Background Information

> After a natural disaster strikes an area:

- quick response from national and international government
- > non-government organizations
- humanitarian assistance
- Low-cost technologies are:
 - designated to improve water quality
 - > able to meet the requirement that the World Health Organization (WHO) has identified for sustainable access to improved drinking water in the developing world

Point-of-use device

Evaluate the ability of three low cost water purification technologies

1. Backpack filter unit (spun polypropylene filter \rightarrow carbon block filter \rightarrow UV),

2. UV disinfection unit powered by a solar panel,

3. Water purifier containing sand impregnated with silver nanoparticles (TATA Swach)

to enhance the quality of the feed water in the presence of emergency as well as in rural areas

Low cost water purification technologies

Backpack filter unit



UV - Unit

4" diameter x 20" long PVC pipe 15 W 18" germicidal lamp

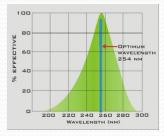
Developed at the University of Hawaii

30 x 57.2 x 28 cm

www.tataswach.com/

Basic disinfection concepts.... (1)

UV...


involves the flow of water through a vessel containing a UV lamp.

➤ As the water passes through this vessel → microorganisms are exposed to intense UV light energy which causes damage to genetic material (i.e. nucleic acids: DNA or RNA) needed for reproductive functions → prevents the microorganism from multiplying or replicating in a human or animal host.

> UV light, λ : 200 to 390 nanometers (nm).

> $\lambda = 254$ nm is the most effective l from low-pressure Hg UH lamps for disinfection.

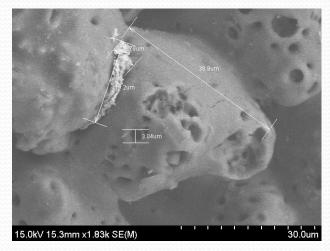
INLET DISINFECTION CHAMBER UV RAYS UV

Disinfection depends on:

- >UV dose
- ➤Water quality
- ➤Type of organism

Basic disinfection concepts.... (2)

Sand impregnated with Silver nanoparticles ...


> involves the flow of water through filters packed with sand impregnated with silver nanoparticles

> It is primarily due to the presence of silver nanoparticles

> It is based on the direct contact between silver nanoparticles and the cell wall of an organism

> The inhibition depends on:

- Concentration ¬
- Shape and size
- Initial bacterial number

Preliminary Information

Low cost water treatment	Field – Laboratory study	Location	Type of water
Packpack filter	Tiold Theiler d		Pond water
Backpack filter	riela	Field Thailand	
UV disinfection			Stream water
powered by a solar panel	Laboratory	Hawaii, USA	Stream water w primary effluent
TATA Swach	Laboratory	Hawaii, USA	Stream water*

*Higher turbidity and higher microbial content compared to typical sources of water recommended by TATA Swach. However, in India...

- the municipal water can be turbid during the monsoon seasons,
- in village areas, pond water may be the source of drinking water,
- stream water may be the only source of water after a disaster

Materials and Methods

Turbidity

Total Coliforms (TC) and E.coli (EC)

using Colilert 18 with Quanty-Tray 2000

from IDEXX industries

http://www.idexx.com/view/xhtml/en_us/wa ter/colilert-18.jsf?SSOTOKEN=0

Structure of the filtering media and evaluation of the movement of silver nanoparticles

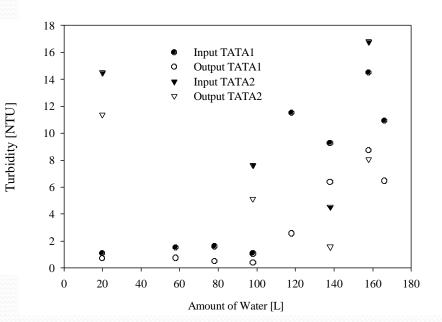
Hitachi S-4800 Field Emission Scanning Electron Microscope (SEM) with Oxford INCA X-Act EDX System

Parameters	Feed water	Output	Thai military standards		
POND WATER					
Turbidity (NTU)	13.4	3.32	< 5		
Total coliforms (MPN/100 mL)	2420	45	< 2.2		
E. Coli (MPN/100 mL)	2	< 1 (detection limit)	None		
LAKE WATER					
Turbidity (NTU)	12	1.75	< 5		
Total coliforms (MPN/100 mL)	> 2.420	1	< 2.2		
E. Coli (MPN/100 mL)	46	< 1 (detection limit)	None		

SOURCE: Manoa Stream

Flow rate (mL/min)	Feed water (MPN/100 mL)	Output (MPN/100 mL)	Reduction (%)
TOTAL COLIFOR	MS		
55	15800	< 1	100%
170	15800	< 1	100%
285	15800	< 1	100%
E. Coli			
55	1310	< 1	100%
170	1310	< 1	100%
285	1310	< 1	100%

UV + Solar panel


SOURCE: Manoa Stream + 10 % Primary effluent

Flow rate (mL/min)	Feed water (MPN/100 mL)	Output (MPN/100 mL)	Reduction (%)		
TOTAL COLIFORM	S				
55	82900	< 1	100%		
170	82900	< 1	100%		
285	82900	1	100%		
E. Coli	E. Coli				
55	33600	< 1	100%		
170	33600	< 1	100%		
285	33600	1	100%		

TATA Swach

Operating Conditions

ID	1 st TATA Swach	2 nd TATA Swach
Name	TATA1	TATA2
Type of water	Settled	Unsettled
Water added/batch	6L	4L
Starting turbidity	1.3 NTU	14.5 NTU
Range of turbidity	1 – 15 NTU	4 – 17.5 NTU
Operating/ resting time	1/1 hr	1/2 hr

Overall Reduction► TATA1: 51%► TATA2: 43%

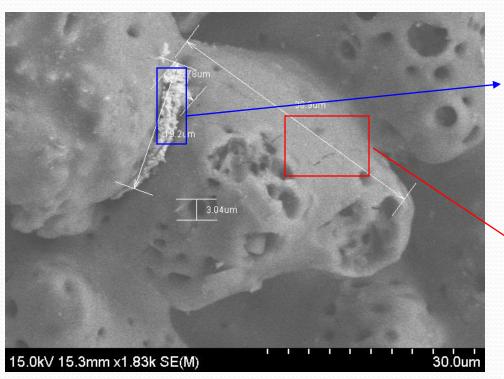
Removal Efficiency of Total Coliforms

Batch	Total Coliforms					
of		TATA1			TATA2	
water (L)	Input (MPN/ 100 mL)	Output (MPN/100 mL)	Reduction (%)	Input (MPN/100 mL)	Output (MPN/100 mL)	Reduction (%)
20	1050	50.4	95.2	48392	257	99.5
40				28615	1583	94.5
60	908	23.1	97.5	26060	365.7	98.6
80	262	3.1	98.8	6350	224.8	94.5
100				2730	256.7	90.6
120	2934	259.8	91.2	8845	81.45	99.1
140	20224	478.7	97.6	1565	14.9	98.6
160	34465	774.1	97.8			

Removal Efficiency of E.coli

Detch			oli			
Batch of		TATA1			TATA2	
water (L)	Input (MPN/ 100 mL)	Output (MPN/100 mL)	Reduction (%)	Input (MPN/10 o mL)	Output (MPN/100 mL)	Reduction (%)
20	2	2	0	2734	182.7	93.3
40				1800	361.3	79.9
60	10	1	90	1255	90.8	92.8
80	0	0		315	71	77.5
100				342.5	35.8	89.6
120	349	70.4	79.8	398	22.8	94.2
140	2734	267.3	97.6	50	2.55	94.9
160	1800	238.4	97.8			

Impact of Silver nanoparticles


TOP LAYER

	Element	Weight %	Atomic %
6.45um	С	4.46	10.84
	0	33.23	60.59
3.22um	Si	15.81	16.42
Ý	Ag	42.69	11.55
	W	3.81	0.61

Mostly carbon and silica -> presence of husk ash and silica sand
Very few micro- and nano-particles of silver are present

Impact of Silver nanoparticles

Bottom Layer

Micro- and nano-particles of silver are distributed on the surface of each grain.

Element	Weight%	Atomic%
С	10.23	21.65
0	36.06	57.29
Si	12.87	11.65
Ag	38.64	9.11
W	2.19	0.30

Element	Weight%	Atomic%
С	19.89	28.19
0	53.57	57.00
Si	23.74	14.39
K	0.34	0.15
Ag	0.66	0.10
W	1.79	0.17

Conclusions

- Regardless of the feed water, the backpack unit was able to meet the Thai military drinking water standards in terms of turbidity and *E. coli*. In one occasion, the level of Total coliforms exceeded the standards.
- The homemade UV unit was able to treat larger volume of water compared to the other 2 technologies and achieved at least 99% removal of total coliforms, while *E. coli* were constantly removed.
- > Local atmospheric conditions highly impacted the bacterial removal.
- The solar panel was not able to provide consistent and adequate power to the UV unit.
- The efficiency of the TATA was limited by the quality and amount of water that passed through it.

Conclusions

- Limited amounts of water (140 to 166L) represents only 5.5% and 3.3% of the maximum amount of water* that this POU device should be able to provide.
 - The source of water should be settled for a longer period of time prior to use in order to achieve < 1.5NTU.
- ➤ The SEM-micrographs showed a decreasing of silver nanoparticles between the top and bottom layer of the filtering unit → wash out

Due to the specific location of the silver nanoparticles compared to the grains of husk ash

Acknowledgments

- > Funding for this research was provided by:
 - Pacific International Center for High Technology Research (PIC-HTR)/Hawaii Technology Development Venture (HTDV) through the Office of Naval Research (ONR),
 - United States Pacific Command (USPACOM)
 - Marine Corps Pacific Experimentation Center (MEC)
 - National Institute for Water Resources

> We would like to acknowledge Ren Ishii

