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In this research, for the first time, active diffraction gratings as optical PT-symmetric platforms
are studied. Through numerical and analytical studies, the bifurcation as the featured property in
PT-symmetric systems is indicated. Moreover, it is shown that in addition to the gain/loss value,
the period selection can push the system from the PT-symmetry to the symmetry-broken phase.
Accomplished numerical simulations by the Rigorous Coupled-Wave Analysis (RCWA) method in-
dicates the existence of Spectral Singularities (SSs) corresponding to single-mode, zero-bandwidth
resonant peaks. The guiding procedure for fulfilling SSs in PT-symmetric diffraction gratings is re-
lated to the unique behavior of the scattering matrix in these kinds of gratings. The purpose of this
study is to fill the research gap related to active PT-symmetric diffraction gratings and introducing
new functionalities for these structures, including low-threshold and super-coherent lasers, which
can advance the performance of on-chip optoelectronic devices.

I. INTRODUCTION

Diffraction gratings as the first optical components op-
erating at subwavelength region can be considered the
aspiration of modern nano-photonics concepts such as
photonic crystals and metamaterials [1]. The main pur-
pose of all these optical components is to control the
light dynamic in a special way in nanometer-scale [2].
Today, the applications of diffraction gratings are ex-
panded from telecommunications [3] and astronomy [4] to
chemistry [5] and biosensing [6]. The recent progress in
nano-fabrication technologies enabled us to create highly
precise diffraction gratings and revealed the potential of
these optical components in practice. Thus, in the recent
decade, special attention has been attracted to this field.

The unique properties of diffraction gratings are associ-
ated with the spatial modulation of the Refractive Index
(RI). Due to the diffraction, the amplitude and phase of
the incident wave on a grating are modified. By optimiz-
ing grating parameters such as period, we can design the
diffraction grating for different purposes, and the grating
can operate as an optical filter [7], reflector [8], absorber
[9], resonator [10], and go on.

More recently, by drawing the fundamental concepts
in quantum physics such as Parity-Time (PT) symme-
try to the realm of optics and photonics, novel applica-
tions, such as unidirectional emission [11] and asymmet-
ric diffraction [12], appeared for periodical structures, in-
cluding diffraction grating. The simplest definition of a
PT-symmetric system is a non-Hermitian system whose
Hamiltonian remains invariant under spatial reflection (p
−→ −p, x −→ −x) and time-reversal (p −→ −p, x −→ x, i
−→ −i) operators, where p, x, and i are momentum, lo-
cation, and imaginary unite, respectively [13]. It is indi-
cated that to satisfy this condition the related potential
should be V̂ (x) = V̂ ∗(−x). The equivalent condition for
a optical system is n(x) = n∗(−x) [14].
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In practice, two identical coupled waveguides, one
showing loss and the other one indicates the same amount
of gain, can be the simplest example of an optical PT-
symmetric system [14]. In this system, by increasing
the gain/loss contrast between these two waveguides, the
system transits from a PT-symmetric regime where all
eigenvalues are real into a PT-broken regime where the
eigenvalues are complex. There is a transient point be-
tween these two regimes named exceptional point, where
both eigenvalues and eigenstates coalesce [15]. The
uniqueness of a PT-symmetric system lies in indicating
real eigenvalues, despite the non-Hermiticity and non-
orthogonality of its eigenstates [16], which lead to ex-
traordinary phenomena. Indeed, in PT-symmetric sys-
tems, we take advantage of the beneficial role of loss,
while in trivial systems, loss always has a destructive ef-
fect, and it should be eliminated.

Scholars gradually found that using more complicated
optical platforms such as periodical structures to realize
the PT-symmetry concept can introduce new non-trivial
outcomes, including loss-induced transparency [17], non-
reciprocal light propagation [18], unidirectional invisibil-
ity [11, 19], and directional emission [20]. Among differ-
ent kinds of periodical structures, only a few works have
focused on diffraction gratings as a platform for indicat-
ing PT-symmetric effects [21, 22], and the accomplished
works do not go beyond investigating asymmetric diffrac-
tion. Furthermore, to the best of our knowledge, no
active PT-symmetric diffraction grating has been stud-
ied yet, and all the previous works investigated passive
gratings. Therefore, it seems that there is a research
gap in active PT-symmetric diffraction gratings and ex-
amining the possible new non-trivial phenomena besides
asymmetric diffraction effect. This research will theoret-
ically and numerically study the emission properties of
diffracted modes from an active grating by Helmholtz
equation, driving the related Hamilton and indicating
symmetry and symmetry-broken and exceptional point
regions. Moreover, the properties of resonating modes
induced by PT-symmetric diffraction grating will be dis-
cussed in detail.
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II. THEORY AND ANALYTICAL SOLUTIONS

As we mentioned in introduction, the guiding proce-
dure in diffraction gratings lies in spatial RI modulation.
On the other hand, to realize PT-symmetry, RI modula-
tion needs to satisfy n(x) = n∗(−x). Therefore, the real
part of RI modulation has to be a symmetric function
and its imaginary part should be an asymmetric func-
tion. Thus the RI modulation can be defined as:

n(x) = n0 + ncos(2πx/a) + iγsin(2πx/a) (1)

where a is the period, n0 is the background refractive
index, and n and γ are the real and imaginary parts of
the refractive index modulation, respectively.

FIG. 1. (a) Real and imaginary parts of a PT-symmetric RI
modulation in the x-direction .(b) Real RI modulation in x-
and z-direction.

Figure 1.(a) shows the real (solid blue line) and imagi-
nary (red dashed line) parts of the PT-symmetric refrac-
tive index distribution. The positive part of the imag-
inary RI indicates gain, and the negative part shows
the induced loss. Figure 1.(b) displays the real part of
RI modulation in two dimensions where the RI solely
changes in the x-direction, and the incident light is per-
pendicular to the periodicity. A−, A0, and A+ show
the amplitude of the −1, 0, and +1 orders of diffracted
modes, respectively.

In this research, we study the wave propagation of an
incident light entering along the z-axis where the wave
E(x, z) obeys the Helmholtz equation [23, 24]:

∇2E + k20n
2(x)E = 0 (2)

where k0 = 2π/λ. Since, the incident light is normal
to the periodicity both x and z components are effective.
The general solution for E(x, z) can be derived by Bloch’s
wave equation.

E(x, z) = u(x)ei
~β.~r (3)

where u(x) is a periodic function in the x-direction

u(x) =

∞∑
m=−∞

Ame
−i2πmx/a (4)

and in a 2D plane

ei
~β.~r = eiβxxeiβzz (5)

By substituting equation 4 and 5 in equation 3:

E(x, z) =

∞∑
m=−∞

Ame
iβzzei(βx−2πm/a)x (6)

To find βx and βz we should use the phase match-
ing rule and dispersion relation. According to the phase
matching:

βx − 2πm/a = kx,inc − 2πm/a (7)

kx,inc = k0nincsin(θinc)

where kx,inc, ninc, and θinc are the wavenumber the re-
fractive index and angle of the incident light, respectively.
Since the incident angel is zero kx,inc = 0, consequently
βx = 0. According to the dispersion relation, shown in
equation 8.

βz =

√
k20n

2
0 − (2πm/a)

2
(8)

If we consider the grating in diffracted regime where
a >> λ, βz will be reduced to βz = k0n0. Now by
substituting βz and βx in equation 6:

E(x, z) =

∞∑
m=−∞

Ame
−i[mKx−k0n0z] (9)

where Am is the amplitude of the mth diffracted mode,
and K = 2π/a.

To analytically solve equation 2, in addition to E(x, z)
we need to find n2(x) function. Through equation 1,
supposing n and γ are significantly smaller than n0, the
squared of RI modulation can be rephrased as:

n2(x) = n20 + n0[c+eiKx + c−e−iKx] (10)
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where c+ = n + γ and c− = n − γ. Now, by substitut-
ing equations 9 and 10 into equation 2, a set of coupled
equations (equation 11) is obtained. It should be noted
that to achieve equation 11, we only considered the first
three orders (0, -1, and,+1 orders) [25].

∂A0

∂z
− ik0

2
[c−A1 + c+A−1] = 0

∂A1

∂z
+
iK2A1

2k0n0
− ic+k0A0

2
= 0 (11)

∂A−1
∂z

+
iK2A−1
2k0n0

− ic−k0A0

2
= 0

If we write equation 11 in a matrix form, the related
Hamilton would be

H =

 σ −k0c+/2 0
−k0c−/2 0 −k0c+/2

0 −k0c−/2 σ

 (12)

where σ = K2/2k0n0. The eigenvalues of this Hamilto-
nian are:

λ1 = σ

λ2 = 1/2[σ −
√

4k20(n2 − γ2) + σ2] (13)

λ3 = 1/2[σ +
√

4k20(n2 − γ2) + σ2]

While λ1 is independent of real and imaginary refractive
index modulation, λ2 and λ3 are dependent on the real
and imaginary parts. Thus, once the condition 14 is sat-
isfied, the system will be located at its exceptional point,
and λ2 and λ3 and their related eigenstates coalesce.

γ =

√
n2 +

σ2

4k20
(14)

Therefore, once the imaginary part of refractive index

modulation is | γ | >
√
n2 + σ2

4k20
, the system enters into

the symmetry-broken phase, indicating imaginary eigen-
values. Figures 2.(a) and 2.(b) show the real and imagi-
nary part of eigenvalues according to the imaginary part
of refractive index (γ), respectively, where dashed blue
line indicates λ2 and solid red line displays λ3. As we
can see, in the symmetry region, both eigenvalues show
pure real value. However, immediately after the excep-
tional point, shown here by dashed gray line, two eigen-
values bifurcates so that one of them possesses a negative

imaginary part (λ3) and the other one indicates a positive
imaginary part (λ2). It can be interpreted that one mode
is trapped mostly in gain and the other one captured in
loss and suppressed. The bifurcation is the most remark-
able property of PT-symmetric systems [26, 27]. This
unique property is used in designing single-mode lasers
[28, 29], where undesired competing modes are captured
in the loss and suppressed, and only confined modes in
the gain are amplified.

FIG. 2. (a) Real part and .(b) Imaginary part of eigenvalues
according to the γ for a system with the periodicity of 2 µm.
The exceptional point is shown by dashed gray line.

In gratings that incident light is parallel to the peri-
odicity (along x-direction in figure 1.(b)), only the ratio
between real and imaginary parts of refractive index (n
and γ) determines the phase of the system [19]. However,
in our designed grating, where the incident light is per-
pendicular to periodicity, the period plays an essential
role.

FIG. 3. (a) Real and .(b) Imaginary parts of eigenvalues
according to the period for a PT-symmetric grating. The
exceptional point is shown by dashed gray line.

Figure 3.(a) and 3.(b) show the real and imaginary
part of eigenvalues shows the real and imaginary parts
of eigenvalues according to different period selections,
respectively. This figure demonstrates that increasing
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the period can push the system to the symmetry-broken
phase. The dashed gray line shows the location of the
exceptional point. Equation 14 shows the advantage of
diffraction gratings compared to Distributed Bragg Re-
flectors (DBRs) [30, 31]. This equation shows that in the
diffraction gratings, in addition to real and imaginary
parts of RI modulation, period and background refrac-
tive index can alter the system phase from symmetry to
symmetry-broken phase. Thus, in a diffraction grating,
more design freedom exists.

This section analytically solved the Helmholtz equa-
tion for the three first diffracted modes. We showed the
impact of the imaginary part of RI modulation and pe-
riod to shift the system from a PT-symmetry phase to
the symmetry-broken stage. In the following section, we
will design a grating and report the diffraction efficiency
solved by the RCWA method. Moreover, the related elec-
tric field and amplitude distribution over the grating will
be displayed, which gives us a depth understanding of
physical mechanisms leading to extraordinary phenom-
ena observed in PT-symmetric diffraction gratings.

III. NUMERICAL SIMULATIONS

Figure 4 displays a 3D schematic view of the designed
diffraction grating, where yellow and red parts show the
gain and loss, respectively. In this study, silicon dioxide
was used as the substrate (nsio2 = 1.45). The suggested
material to design gain and loss parts is Lead-selenide
(PbSe) as an active material with the real effective index
of nPbSe = 5.07.

FIG. 4. 3D schismatic view of the PT-symmetric diffraction
gratings.

One of the most well-known criteria of PT-symmetric
systems is the spatial bifurcation of two modes in the
symmetry-broken region. As presented in figure 2, in
the symmetry-broken phase, two modes with the same
frequency (same real part of eigenvalues) show the bifur-
cation, where one is captured mostly in the gain other
trapped mainly in the loss. Thus, one mode is ampli-
fied while the other one is suppressed. This phenomenon
is the primary mechanism behind the single-mode lasing
in most of the PT-symmetric lasers. We expect that the

numerical simulation demonstrates the same mechanism.

Figure 5 shows the spatial electric field distribution
over a grating with the period of 1 µm and the thickness
of 821 nm. Also, the substrate and gain/loss areas are
demonstrated. Figure 5.(a) shows the symmetric distri-
bution of the electric field over the gain and loss areas
so that no mode experiences net amplification or sup-
pression. This pattern can be associated with the PT-
symmetry phase, where both eigenvalues are purely real.
By increasing gain/loss (γ) from 0.2 to 0.21, the system is
shifted to the symmetry-broken phase, where one mode
is captured in the gain and experiences the amplification.
Figure 5.(b) displays this mechanism clearly. However,
the other mode is trapped in the loss and is suppressed
(figure 5.c).

FIG. 5. Electric field distribution over the PT-symmetric
grating where (a) γ = 0.2, associated with the symmetry
phase .(b) γ = 0.21 associated with the symmetry-broken
phase (amplified mode) .(c) γ = 0.21 associated with the
symmetry-broken phase (suppressed mode).

After indicating the bifurcation over the PT-symmetric
diffraction grating, we found out that the system can
show a single-mode, almost zero-bandwidth (0.04 nm)
lasing mode through optimizing gain/loss. Figure 6
shows the diffraction efficiency of the transmitted mode
where the optimized value of γ equals 0.22. As this figure
shows, over a broad spectrum range (1300 nm), the only
lasing mode appeared at 1.46 µm. To better understand
this non-trivial lasing mode, we compared the logarithm
spectrum of the transmitted mode where γ = 0.22 and
γ = 0.21. Figure 7 illustrates this comparison, where
the solid red line is related to the system with γ = 0.22,
and the dashed blue line is associated with γ = 0.21.
Furthermore, the related amplitude distribution for each
spectrum is shown over one period in the inset.

As figure 7 shows the diffraction efficiency of the trans-
mitted mode when γ = 0.22 is 104 greater than when
γ = 0.21. The primary reason for this huge difference
can be related to the intensity of the confined field in
the gain area. The inset illustrates that the amplitude of
the confined mode in the gain area for the grating with
γ = 0.22 is almost 102 greater than the amplitude of the
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FIG. 6. The linear form of the transmitted spectrum over
wavelengths from the grating with γ = 0.22.

trapped mode in the gain for the same grating but with
γ = 0.21. The physical mechanism for this extraordi-
nary phenomenon has roots in the scattering theory in
PT-symmetric systems, and the concept of spectral sin-
gularity [32–34], which will be discussed in detail in the
following paragraph.

FIG. 7. The logarithm form of the transmitted spectra over
wavelengths from the grating with γ = 0.22 (solid red line)
and γ = 0.21 (dashed blue line). The amplitude distribution
of each spectrum is displayed over one grating period in inset.

The properties of gratings as scattering systems can
be defined by Scattering matrix (S-matrix). This matrix
relates the input field to the output field, passing through
a scattering system. Equation 15 shows the S-matrix
(Snm) that associates the incoming mode amplitude (φm)
to the outgoing mode amplitude (ηn).

∑
n

Snm(ω)φm = ηn (15)

The required condition to define an S-matrix is the uni-
tary condition (|det S|=1). For passive structures with

real frequencies, this unitary condition is only satisfied by
having unimodular S-matrix eigenvalues (|s±|=1) [35].
Applying PT operator on S-matrix meets the unitary
condition. However, in contrast with passive structures,
in PT-symmetric systems, the only way to meet the uni-
tary condition is not having unimodular eigenvalues. In
these systems, the unitary condition can be satisfied by
pairs reciprocal moduli as well (s±=1/s∗∓) [36]. The for-
mer possibility to satisfy the unitary condition is related
to the PT-symmetry (unimodular eigenvalues), and the
latter way (reciprocal eigenvalues) is associated with the
PT-symmetry-broken.

In the PT-symmetry-broken phase, there are points at
which poles and zeros of the S-matrix intersect on the
real axis [37, 38]. This intersection leads to approaching
sn to zero and consequently 1/s∗n =∞, while their prod-
uct is still unity. In fact, these singular points, named
spectral singularity, correspond to the giant amplitude
enhancement of diffracted modes for an optimized value
of gain/loss.

SSs are a family member of resonant modes [39, 40].
However, the main feature for SSs that distinguishes
them from trivial resonances is eliminating the imaginary
part of the resonant frequencies [32]. The imaginary part
of the resonant frequencies is responsible for evanescent
energy or, in other words, the bandwidth of the resonant
peaks, the lower evanescent energy, narrower bandwidth.
The uniqueness of SSs lies in being purely real, which in
theory leads to zero-bandwidth resonances [32]. It should
be noted that SSs are different from the Bound States In
Continuum (BICs); however, both show zero-bandwidth
resonances [41].

FIG. 8. The transmission coefficient map over wavelengths,
where γ changes from 0 to 0.23. The colored bar shows the
transmission coefficient value.

Figure 8 indicates the optimized value of gain/loss for
the realization of SS in the designed grating. This figure
shows the transmission coefficient map over wavelengths,
where γ changes from 0 to 0.23. A considerable enhance-
ment is observed at 1.463 µm when γ is 0.22. The point
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marked with a white arrow shows that only at a specific
gain/loss value, here (γ = 0.22), SS can occur, and higher
or lower values cannot satisfy the SS condition. This is
matched with the theory that claims only and only at
the SS point, sn goes to zero, while 1/s∗n goes to ∞, and
the giant transmission enhancement is related to 1/s∗n,
which its amplitude approaches infinity. This transmis-
sion coefficient map indicates that by this unique diffrac-
tion grating design, γ = 0.22 leads to appearing one SS
at 1.46 µm.

IV. CONCLUSION

In this study, for the first time, we investigated an ac-
tive granting including gain and loss as an optical plat-
form to realize the PT-symmetry concept. Herein, by
solving the Helmholtz equation, the bifurcation leading

to confining the amplified mode in the gain area was indi-
cated. We showed that in diffraction gratings, in addition
to gain/loss value, the period selection can move the sys-
tem from PT-symmetry to the symmetry-broken phase.
Moreover, a zero-bandwidth lasing mode at 1.463 µm was
found through a numerical simulation. We suggest that
this high Q-factor resonance mode can be the result of op-
timizing the gain/loss value, which locates the system in
its spectral singularity, where one of the scattering states
approaches zero while its reciprocal state approaches in-
finity. It should be noted that the method used for nu-
merical simulation is the RCWA method. Considering
the functionality of gratings in a broad range of appli-
cations, we anticipate introducing active PT-symmetric
diffraction gratings can extend this range and offer new
applications, including low-threshold and super-coherent
lasers advancing the on-chip integrated optoelectronic de-
vices.
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