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ABSTRACT This paper presents the modeling and design of a frequency agile antenna using an anistropic
artificial dielectric layer (AADL) for multi-band phased array radar applications. The proposed AADL
material is placed underneath the patch radiator and is designed using periodically arranged metallic
cylinders in which varying height, diameter, and the distance used between them allows the control of
the effective permittivity of the patch antenna. Closed form design expressions are formulated to synthesize
the dielectric properties of the AADL as a function of the cylindrical unit cell dimensions. Design trade-offs
based on the proposed formulation and numerical simulations show the overall performance of the AADL
on microstrip patch (MS) antennas. To validate the proposed concept, five individual AADL MS patch
antennas in C-band were designed, fabricated, and tested. Simulated and measured results (s-parameters
and radiation patterns) are in good agreement with the results obtained from the theoretical model. The
proposed AADL concept has the potential to be used in the development of future reconfigurable tunable
multiband antennas that use liquid metal to dynamically change the heights of the cylinders.

INDEX TERMS anisotropic, artificial dielectric layer, low-profile antenna, microstrip patch antenna, multi-
band antenna, reconfigurable, shared aperture array, tunable.

. INTRODUCTION number of RF systems needed during deployment and allow
improved mobility and operational agility, while maintain-
ing high spectral efficiency. Compact shared aperture array

designs are required to enable efficient integration of ship-

URRENTLY, multiple applications, including commu-
nications, electronic warfare, weather radar, aircraft

surveillance, security, and defense, require diverse type of
antennas to cover from low frequencies to millimeter waves
[1]. As the incorporation of new advanced sensors for these
applications increases, platforms get crowded and limited
in space and prime power. Moreover, adding more antenna
apertures introduces new challenges such as increased radar
cross-section (RCS), radio frequency (RF) blockage, and
electromagnetic interference in communication and radar
systems [1]. This enforces stringent requirements on system
design specially for military applications. Multi-function,
shared aperture, and reconfigurable capabilities reduce the
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board RF functions including radar, communications, and
electronic warfare (EW) [1]-[6].

Recently, new antenna designs that offer features to
achieve reconfigurable radiation patterns, polarization, and
frequency diversity [7]-[15], and/or their combinations [16]-
[19], have been demonstrated. These antennas can be used to
satisfy current and future commercial and military require-
ments. However, such antennas have multiple constraints that
increase size, cost, and complexity. Additionally, array anten-
nas for multiband applications must achieve good impedance
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FIGURE 1: Proposed AADL based antenna: a) Side view. b) 3D View. c) AADL unit cell.

match and high efficiency throughout all operation bands. In
the case of frequency reconfigurability, antennas should also
exhibit a constant radiation pattern and consistent polariza-
tion performance across the entire frequency tuning range.
For reconfigurable and multiband arrays, this requirement is
difficult to achieve, since the element spacing is frequency
dependent. Research articles that discuss reconfigurable and
agile beam patterns for multiband applications can be found
in [20]-[25]. The proposed architectures use MEMS switches
and PIN diodes to achieve shared and reconfigurable fea-
tures on an array. However, these antennas produce different
radiation patterns at different frequencies. Arrays for large
conical scanned angles (+60°) require an element spacing
not larger than 0.5, to avoid grating lobes. Grating lobes
deteriorate the performance of a multi-band array, especially
for the low portion of the frequency range. This problem
is discussed in [26], where a switch based L/S frequency
band adaptive antenna aperture is replaced with non-adaptive
elements (works at S-band) in the antenna array.

Theoretical and numerical analysis of artificial dielectric
layers (ADLs) for microwave substrates and multiple exper-
iments using anisotropic materials for antenna applications
are presented in [27]-[31]. It is important to mention that
previous research on AADL’s structures has not been done or
applied for multiband antenna array application. To achieve
frequency reconfigurable antennas, ferrite material was used
as a substrate to tune a desired frequency by changing
magnetic fields [32], [33]. However, these antennas had low
efficiency and distorted radiation patterns. Liquid crystal
material was also used for the same purpose [34], [35], but
produced a very narrow frequency tuning range.

In this paper, an alternative approach to obtaining a re-
configurable and shared aperture array antenna is discussed.
Instead of using an adaptive aperture element, an anisotropic
artificial dielectric layer (AADL) on a radiating antenna is
used. This AADL enables adaptive permittivity that allows
changing the resonant frequencies, while the element dimen-
sions and spacing remain unchanged. This concept provides
invariant radiation characteristics of the array at different
frequencies while maintaining the same aperture size and
element spacing. Closed-form design equations to synthesize
the AADL unit cell are presented. The proposed AADL is
based on a metal-loaded dielectric that effectively changes

2

FIGURE 2: AADL geometry with PEC/PMC boundary con-
ditions to extract ¢.. s-parameters are obtained using de-
embedding ports, indicated by arrows in red.

the dielectric constant of the antenna substrate, allowing the
use of same antenna for different frequency operations. To
validate the proposed formulation, five antenna prototypes
are designed, fabricated, and tested. This formulation enables
efficient design methodology for reconfigurable array anten-
nas that will facilitate the implementation of multiband and
multifunction phased array systems that reduce the overall
number of sensors in crowded platforms.

Il. PROPOSED AADL ANTENNA AND FORMULATION.
The geometry of the AADL unit cell proposed is composed
by a host substrate with loaded metallic cylinders and its
use to design a microstrip patch antenna is discussed in
this section. Closed form design expressions are derived to
synthesize the dielectric properties of the AADL as a function
of the cylindrical unit cell dimensions.

A. AADL SUBSTRATE UNIT CELL

As illustrated in Figure Ic, the dimensions of the cylinder
can be altered to change the host substrate in order to achieve
different permittivities. The effective permittivity (¢,) can be
calculated by using the proposed piece-wise analytical ex-
pression in (1) and (2). These equations are obtained by using
the curve fitting technique based on a parametric analysis.

€. = (er — 0.04)e’ + 0.04elerHE) S0 (1)
where
a 2 a
F—371.55< > 503< >
Pway P%y
g\ 3% @
0.0821 185
oo () -+
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FIGURE 3: Calculated and simulated effective permittivity
€.) vs. the cylinder’s height using different dielectric hosts
er =2.2and e, = 3.48).

P, (P, or P,) are the dimensions of the unit cells that
represent the spacing between cylinders, and P, is the overall
dielectric thickness of the AADL. The proposed formulation
works for symmetric AADL unit cell, i.e P,=FP,. The volume
of the cylinder is f, = m(a/Pyy)*h1/(4P,), where a and
hy are the diameter and height. This formulation was used
to design two AADL structures in which metallic vias were
placed into two different host materials with relative permit-
tivities of €, = 2.2 and 3.48 respectively. A cylinder with a
a = 0.5 mm diameter and a material thickness of P, =2.413
mm is used. To validate the proposed equations, AADL unit
cells with different dielectric hosts were simulated in Ansys
HFSS. Figure 2 illustrates the proposed unit cell with the
required perfect electric (PEC) and perfect magnetic (PMC)
boundary conditions for a HFSS simulation setup. Length
of red-arrow is representing the distance of de-embed port
into the proposed model. The constitutive parameters of the
AADL structure (e,) are extracted using the Smith algorithm
proposed in [36]. The comparative results of the effective
permittivity as a function of the cylinder height using the
proposed formulations (1)-(2), and simulated results in HFSS
are shown in Figure 3. This figure shows good agreement
between calculated and simulated results.

B. AADL ANTENNA

The proposed antenna geometry with the anisotropic AADL
structure is illustrated in Fig.1. Periodic metallic cylinders
are inserted in the antenna dielectric layer to convert an
isotropic substrate to an anisotropic substrate with a dielectric
property is frequency dependent. The height, diameter, and
separations between cylinders are used to synthesize the
permittivity as a function of the frequency of the AADL. To
model the microstrip patch antenna with an AADL substrate,
a conventional cavity model is used [37], [38]. This model
is composed of top and bottom perfect electrical conductor
(PEC) walls and side perfect magnetic conductor (PMC)
walls in order to generate the dominant TM-mode where €,
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is sensitive to the AADL structure proposed.

The resonant frequency of the dominant TM-mode for the
proposed AADL based antenna can be calculated using (3)
to (6) [38].

_ c mr\ 2 nr\ 2 I\ > 3
fmnl—m We + fe + E ()

where
We=W )
Le=L+2AL = L[1 + §(L)] YL
5L = % (0.882 T 0.162(617;1)
€, +1 L )
+ 0.758 +1In ( = + 1.88
TE, h
10h \ %°
€eL,eW - 5 (ez + 1) + (ez - 1) <1 + L, W> ‘| (6)

W and L are the physical dimensions of a patch antenna,
and W, and L. are the electrical dimensions of the patch
antenna. €.z, .y represents the effective dielectric constant
in the z-axis that is dependent on €, L, W and h.

lll. DESIGN TRADE-OFFS

Using (1)-(2), the effective permittivity of the MS patch
antenna (e,) is calculated for different cylinder dimensions
(radius, height, and spacing). Roger Duroid 4350B with a
relative permittivity of €, = 3.48 was used at different thick-
nesses (F,) to demonstrate this formulation and highlight
the benefits of the proposed AADL structure in a multiband
antenna. The lower effective permittivity value of the AADL
is 3.48 and increases as the height of the metallic cylinder
increases. This is due to the high density of metallic cylinder
in a 2D lattice metallic array that increase the capacitive
storage energy. As illustrated in Figure 3, a unit cell with
P, , =1 mm and cylinder diameter of 0.5 mm produces an
effective permittivity that varies from 2.2 to 14 for a host
material with ¢, = 2.2, and an effective permittivity that
varies from 3.48 to 21.6 for a host material with ¢, = 3.48
and overall height of 2.032 mm. Increasing the unit cell
size to P, , = 2 mm (see Figure 4) reduces the permittivity
range from 3.48 to 5.12. This is due to the low density of
metallic structure in a 2D lattice metallic array that reduce the
capacitive storage energy of the proposed AADL strcuture.
Another variable that can be used to change the effective
permittivity is the diameter of the cylinder. Figure 4 shows
the cases of using unit cells of 1 mm and 2 mm that have
different cylinder diameters ranging from 0.3 mm to 0.6 mm.
The larger the cylinder diameter, the greater the effective
permittivity that can be obtained. Figure 4 also shows the
tunable capability of the AADL proposed as a function of
the metallic cylinder height. Liquid metal can be used to
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FIGURE 4: Calculated effective permittivity (e.) vs. cylinder’s
height using a dielectric host of ¢, = 3.48 for different diame-
ters (e = 0.3 mmto 0.6 mm). a) P, ,=1mm. b) P, ,=2 mm.
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FIGURE 5: Effective permittivity (¢.) vs. resonant frequency of
AADL MS patch antenna (L = W = 14.7 mm) with different
cylinder’s height, diameter a = 0.5 mm and distance (P.,,) of
1 mm between them in a dielectric host €, = 3.48.

dynamically reconfigure cylinder height in order to have a
tunable AADL in the proposed antenna.

Figure 5 illustrates the calculated and simulated results
of the effective permittivity (e.) underneath of a MS patch
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FIGURE 6: Simulated s-parameters vs. resonant frequency of
AADL MS patch antenna (L = W = 14.7 mm) with different
cylinder’s height, diameter a = 0.5 mm and distance (P,,,) of
1 mm between them in a dielectric host ¢, = 3.48.

antenna as a function of frequency. Cylinders heights (h1)
from 0.51 mm to 1.27 mm are changed to obtain an ef-
fective permittivity from 3.48 to 15.8 when the frequency
of the source are changed from 2.3 GHz to 4.9 GHz. In
this particular case, the design includes a cylinder radius of
0.5 mm, AADL unit cell size (P, ,) are 1 mm. Numerical
simulation in HFSS is performed to evaluate the impedance
frequency response of the AADL antenna. Figure 6 illustrates
the simulated results of the reflection coefficient (S11 in
dB) versus frequency for the AADL antenna for different
cylinders heights (h1). changing the high cylinders heights
(h1) from 0.51 mm to 1.27 mm, the resonance frequency
the antenna change from 4.9 GHz to 4.34 GHz. Figure 6
also shows the S11 decreases as the frequency increases,
this is attributed to the narrow-band characteristic of the MS
patch antenna, where the probe feed position is sensitivity
to the coupling factor between the feed and antenna. This
situation can be improved using MS patch with a different
feed mechanism, for example using the proximity coupling
of aperture coupled patch antenna or increasing the antenna
impedance bandwidth using a parasitic patch antenna.

Figure 7 shows simulated and calculated results of AADL
substrate with a unit cell where P, , is increased to 2 mm.
As it was expected, the effective permittivity offers a small
range of operation from 3.48 to 5.12. Using this AADL
substrate, simulated results of the reflection coefficient (S11
in dB) versus frequency for AADL MS patch antenna are
illustrated in Figure 8. An AADL MS patch antenna with nar-
row range frequency of operation was obtained. Conducting
rings with a diameter of 2a were added in the top of each
cylinder to facilitate the PCB fabrication process. Comparing
the results between the AADL MS patch antennas with
and without conducting rings (see Figure 8 and Figure 9),
can be observed. The conducting rings added a capacitive
effect that compensates the inductive loading of the cylinders
that typically increases for the lower frequencies. Tunable
frequency range increase from 4.34 GHz -4.9 GHz to 4.17
GHz to 4.9 GHz.
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FIGURE 7: Effective permittivity (e.) vs. resonant frequency of
AADL MS patch antenna (L = W = 14.7 mm) with different
cylinder’s height, diameter ¢ = 0.5 mm and distance (P, ) of
2 mm between them in a dielectric host ¢, = 3.48.
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FIGURE 9: Simulated s-parameters of the AADL based MS
square patch antenna (L = W = 14.7 mm) after the inclusion
of conducting rings onto the cylinders.

IV. MEASURED RESULTS AND VALIDATION

Five C-band antenna prototypes were designed, fabricated,
and tested to validate the proposed method. Figure 10 shows
pictures of different layers of the proposed AADL MS square
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patch antenna. Figure 11 and Figure 12 show the geometries
of each antenna with comparative results between calculated,
simulated, and measured s-parameters and radiation patterns.
The cylinder diameter (a) of 0.5 mm and spacing (P ) of 2
mm are kept fixed for all cases. Circular metal plates of 1 mm
diameter were placed on each cylinder to insure a proper
fabrication process. For all AADL antenna cases, Rogers
4350B is used as a host dielectric layer. The first dielectric
core (see top and bottom in Figure 10a and e) contains the
square MS patch antenna. The second one (Figure 10b and f)
contains the periodic AADL metallic cylinders. In all cases,
both substrates were put together using four nonmetallic
screws. Different material heights of the bottom and top
layers of each antenna were used while keeping the overall
thicknesses of the antennas constant (i.e. 2.032 mm).

1) S-parameters

The calculated, simulated and measured results are shown in
Figure 11. The frequency range of the proposed AADL is
from 4.17 GHz to 4.9 GHz and results from changing the
permittivity of the AADL from 3.48 to 5.12, as shown in
Figure 11a. The measured results varied slightly compared
to the numerical and simulated results. This is attributed
to a very small air gap between the dielectric layers and
the slight off-center placement of the metallic disks above
the cylinders. The variations may also be attributed to the
variability of the dielectric constant of the host material, in
this case, 3.48 4 0.05 for Rogers 4350B. An antenna without
an AADL was also fabricated and used as a reference (See
Figure 11b). In all cases, the frequency response for the S11
parameters over a frequency range from 4.17 GHz to 4.9 GHz
match well with the simulated and calculated responses using
the proposed analytical model.

2) Antenna patterns

The radiation patterns of five prototypes were measured
in the far-field chamber at the Radar Innovation Labora-
tory at The University of Oklahoma. Co-polar and cross-
polarization patterns of the five H-polarized MS patch an-
tenna prototypes for E-, D-, and H-planes are obtained and
compared with simulated results in HFSS (see Figure 12).
The Ludwig-3 polarization definition is used for this antenna
[39]. The antennas present the same behavior in beam-width
and backlobe radiation. Therefore, the proposed AADL
based antenna can provide invariant radiation characteristics
for the entire frequency tuning range. Co-polar pattern shapes
match very well with simulated results in all frequencies and
planes. However, a discrepancy in the cross-polar patterns in
the E-planes is observed. This discrepancy is attributed to the
misalignment between the AUT and probe antenna during the
measurements and cross-polarization contamination of the
probe, since it is not rated for measurements below -35 dB.

V. CONCLUSION
In this work, a AADL based frequency agile reconfigurable
antenna is proposed. This antenna uses a metal-loaded ar-
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tificial material that effectively changes the dielectric con-
stant of the antenna substrate, thus allowing the use of the
same antenna for different frequency operations. Closed-
form design equations to synthesize the AADL unit cell are
presented. The accuracy and ease of use of these equations
allow expediting the design process of the proposed antenna
using reconfigurable AADLs.The proposed AADL material
enables the use of the same aperture to achieve a multiband
antenna with invariant radiation patterns. Simulated realized

gain from 6.02 dB to 6.61 dB was observed for a frequency
range from 4.17 GHz to 4.9 GHz, respectively. For proof
of concept, several antenna prototypes limited frequency
range (4.17 GHz to 4.9 GHz) are used. The simulations and
measurements are in good agreement and in line with the
behavior of the proposed theoretical model. This technique
can be extended for other frequency bands. The proposed
low profile architecture provides a wide tuning range with
better efficiency and high cross-polarization isolation. The
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gain from 6.0 dB to 6.6 dB was obtained for frequency range from 4.17 GHz to 4.0 GHz.
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proposed AADL antenna concept has the potential to be
used in the development of reconfigurable tunable multiband
antennas that use liquid metal to dynamically change the
heights of the cylinders.
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