CHEMICAL, BIOLOGICAL & MATERIALS ENGINEERING

100 E. Boyd, Sarkeys Energy Center, T-301 405-325-5811 The University of Oklahoma Norman, Oklahoma

PHILLIPS 66 SEMINAR SERIES, 2017 - 2018

DR. JINGGUANG CHEN

THAYER LINDSEY PROFESSOR OF CHEMICAL ENGINEERING
THE FU FOUNDATION SCHOOL OF ENGINEERING AND APPLIED SCIENCE
COLUMBIA UNIVERSITY, NEW YORK, NY
OUR SEMINAR

"CONVERTING CO₂ VIA THERMOCATALYSIS AND ELECTROCATALYSIS"

Rising atmospheric concentration of CO₂ is forecasted to have potentially disastrous effects on the environment from its role in global warming and ocean acidification. Converting CO₂ into valuable chemicals and fuels is one of the most practical routes for reducing CO₂ emissions while fossil fuels continue to dominate the energy sector. The catalytic reduction of CO₂ by H₂ can lead to the formation of three types of products: CO through the reverse water-gas shift (RWGS) reaction, methanol via selective hydrogenation, and methane by the methanation pathway. In the current talk we will first describe our efforts in controlling the catalytic selectivity for the three products using a combination of DFT calculations and surface science studies over single crystal surfaces, catalytic evaluation of supported catalysts, and in-situ characterization under reaction conditions. Next, we will discuss our efforts in converting CO₂ without using H₂. This is motivated by the fact that ~95% of H₂ is generated from hydrocarbon-based feedstocks, producing CO₂ as a byproduct. We will present two approaches to avoid using H₂ for CO₂ conversion. The first approach involves the utilization of light alkanes, such as ethane, to directly reduce CO_2 via the dry reforming pathway to produce synthesis gas $(C_2H_6 + 2CO_2 \rightarrow 4CO + 3H_2)$ and the oxidative dehydrogenation route to generate ethylene ($C_2H_6 + CO_2 \rightarrow C_2H_4 + CO + H_2O$). The second approach is the electrolysis of CO₂ to produce synthesis gas with controlled CO/H₂ ratios. We will conclude our presentation by providing a perspective on the challenges and opportunities in converting CO₂ via various routes in thermocatalysis and electrocatalysis.

> TUESDAY, MARCH 13, 2018 COOKIES AND COFFEE -- 2:50 P.M. SEMINAR -- 3:00 P.M. SARKEYS ENERGY CENTER, A-235

> > THIS IS A REQUIRED SEMINAR FOR CHE 5971

Accommodations on the basis of disability are available by contacting the office.