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Introduction 
Many problems in plant operation, design, location, and scheduling involve 

variables that are not continuous but instead have integer values. Decision variables 
for which the levels are a dichotomy-to install or not install a new piece of equip- 
ment, for example-are termed "0-1" or binary variables. Other integer variables 
might be real numbers 0, 1, 2, 3, and so on.. Sometimes we can treat integer vari- 
ables as if they were continuous, especially when the range of a variable contains a 
large number of integers, such as 100 trays in a distillation column, and round the 
optimal solution to the nearest integer value. Although this procedure leads to a 
suboptimal solution, the solution is quite acceptable from a practical viewpoint. 
However, for a small range of a variable such as 1 to 3, when the optimal solution 
yields a value of 1.3, we have less confidence in rounding. In this section we will 
illustrate some examples of problem formulation and subsequent solution in which 
one or more variables are treated as integer variables. 

First let us classify the types of problems that are encountered in optimization 
with discrete variables. The most general case is a mixed integer program ing 
(MIP) problem in which the objective function depends on two sets of variables, '% 
and y; x is a vector of continuous variables and y is a vector of integer variables. A 
problem involving only integer variables is classified as an integer programming 
(IP) problem. Finally, a special case of IP is binary integer programming (BIP), in 
which all of the variables y are either 0 or 1. Many MIP problems are linear in the 
objective function and constraints and hence are subject to solution by linear pro- 
gramming. These problems are called mixed-integer linear programming (MILP) 
problems. Problems involving discrete variables in which some of the functions are 
nonlinear are called mixed-integer nonlinear programming (MDLP) problems. We 
consider both linear and nonlinear MIP problems in this chapter. 

9.1 PROBLEM FORMULATION 

Here we review some classical formulations of typical integer programming prob- 
lems that have been discussed in the operations research literature, as well as some 
problems that have direct applicability to chemical processing: 

1. The knapsackproblem. We have n objects. The weight of the ith object is w,  and 
its value is vi. Select a subset of the objects such that their total weight does not 
exceed W (the capacity of the knapsack) and their total value is a maximum. 

Madmize: f (y ) = vyi 
i =  1 

Subjectto: z w y i  5 W yi = O,1 i =  1,2, ..., n 
i =  1 

The binary variable yi indicates whether an object i is selected (yi = 1) or not 
selected ( yi = 0). 
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2. The traveling salesman problem. The problem is to assign values of 0 or 1 to vari- 
ables y,, where y, is 1 if the salesman travels from city i to city j and 0 otherwise. 
The constraints in the problem are that the salesman must start at a particular city, 
visit each of the other cities only once, and return to the original city. A cost (here 
it is distance) c,  is associated with traveling from city i to city j, and the objective 
function is to minimize the total cost of the trips to each city visited, that is 

subject to the 2n constraints 

The two types of equality constraints ensure that each city is only visited 
once in any direction. We define yii = 0 because no trip is involved. The equal- 
ity constraints (the summations) ensure that each city is entered and exited 
exactly once. These are the constraints of an assignment problem (see Section 
7.8). In addition, constraints must be added to ensure that the y, which are set 
equal to 1 correspond to a single circular tour or cycle, not to two or more dis- 
joint cycles. For more information on how to write such constraints, see 
Nemhauser and Wolsey (1988). 

For a chemical plant analogy, the problem can also be cast in terms of pro- 
cessing n batches on a single piece of equipment in which the equipment is reset 
between processing the ith and jth batches. The batches can be processed in any 
order. Here, c, is the time or cost required to "set up" the equipment to do batch 
j if it was previously doing batch i, and y, = 1 means batch i is immediately fol- 
lowed by batch j. 

3 .  Blending problem. You are given a list of possible ingredients to be blended into 
a product, from a list containing the weight, value, cost, and analysis of each 
ingredient. The objective is to select from the list a set of ingredients so as to 
have a satisfactory total weight and analysis at minimum cost for a blend. Let xj 
be the quantity of ingredient j available in continuous amounts and yk represent 
ingredients to be used in discrete quantities vk ( y ,  = 1 if used and yk = 0 if not 
used). Let cj and dk be the respective costs of the ingredients and a ,  be the frac- 
tion of component i in ingredients j. The problem statement is 

Minimize: x cjxj + 2 dkvkyk 
i k 

Subject to: W' 5 x x j  + 2 vkyk 5 W U  
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0 5 x, 5 uj forallj  

y, = (0 , l )  for all k 

where uj = upper limit of the jth ingredient, 
and WU = the lower and upper bounds on the weights, respectively 

Af and A; = the lower and upper bounds on the analysis for component i ,  
respectively 

4.  Location of oil wells (plant location problem). It is assumed that a specific pro- 
duction4emand versus time relation exists for a reservoir. Several sites for new 
wells have been designated. The problem is how to select fi-om among the well 
sites the number of wells to be drilled, their locations, and the production rates 
from the wells so that the difference between the production-demand curve and 
flow curve actually obtained is minimized. Refer to Rosenwald and Green 
(1974) and Murray and Edgar (1978) for a mathematical formulation of the 
problem. The integer variables are the drilling decisions (0 = not drilled, 1 = 
drilled) for a set of n possible drilling locations The continuous variables are the 
different well production rates. This problem is related to the plant location 
problem and also the fixed-charge problem (Hillier and Liebeman, 1986). 

Many other problems can be formulated as integer programming problems; 
refer to the examples in this chapter and Nernhauser and Wolsey (1988) and the 
supplementary references for additional examples. 

Integer and mixed-integer programs are much harder to solve than linear pro- 
grams. The computation time of even the best available MIP solvers often increases 
rapidly with the number of integer variables, although this effect is highly problem- 
dependent. This is partially caused by the exponential increase in the total number 
of possible solutions with problem size. For example, a traveling salesman problem 
with n cities has n! tours, and there are 2" solutions to' a problem with n binary vari- 
ables (some of which may be infeasible). 

In this chapter, we discuss solution approaches for MILP and MINLP that are 
capable of finding an optimal solution and verify that they have done so. Specifi- 
cally, we consider branch-and-bound (BB) and outer linearization (OL) methods. 
BB can be applied to both linear and nonlinear problems, but OL is used for non- 
linear problems by solving a sequence of MILPs. Chapter 10 further considers 
branch-and-bound methods, and also describes heuristic methods, which often find 
very good solutions but are unable to verify optimality. 

9.2 BRANCH-AND-BOUND METHODS USING LP RELAXATIONS 

Branch and bound (BB) is a class of methods for linear and nonlinear mixed-integer 
programming. If carried to completion, it is guaranteed to find an optimal solution 
to linear and convex nonlinear problems. It is the most popular approach and is cur- 
rently used in virtually all commercial MILP software (see Chapter 7). 
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Consider the application of BB to a general MILP problem, in which all the 
integer variables are binary, that is, either 0 or 1. The problem formed by relaxing 
the "0 or 1" constraint to "anywhere between 0 and 1" is called the LP relaxation 
of the MILP. BB starts by solving this LP relaxation. If all discrete variables have 
integer values, this solution solves the MILP. If not, one or more discrete variables 
has a fractional value. BB chooses one of these variables in its branching step and 
then creates two LP subproblems by fixing this variable first at 0, then at 1. If either 
of these subproblems has an integer solution, it need not be investigated further. If 
its objective value is better than the best value found thus far, it replaces this best 
value. If either subproblem is infeasible, it need not be investigated further. Other- 
wise, we find another fractional variable and repeat the steps. A clever bounding 
test can also be applied to each subproblem. If the test is satisfied, the subproblem 
need not be investigated further. This bounding test, together with the rest of the 
procedure, is explained in the following example. 

EXAMPLE 9.1 BRANCH-AND-BOUND ANALYSIS OF AN 
INTEGER LINEAR PROGRAM 

Maximize: f = 86y, + 4y2 + 40y3 

Subject to: 774y, + 76y, + 42y3 5 875 

We can show the various subproblems developed from the stated problem by a 
tree (Figure E9.1). The objective function and inequality constraints are the same for 
each subproblem and so are not shown. The upper bound and lower bound for f are 
represented by ub and lb, respectively. 

Each subproblem corresponds to a node in the tree and represents a relaxation of 
the original IP. One or more of the integer constraints yi = 0 or 1 are replaced by the 
,relaxed condition 0 5 yi 5 1, which includes the original integers, but also all of 
the real values in between. 

Node 1. The first step is to set up and solve the relaxation of the binary IP via 
LP. The optimal solution has one fractional (noninteger) variable (y2) and an objec- 
tive function value of 129.1. Because the feasible region of the relaxed problem 
includes the feasible region of the initial IP problem, 129.1 is an upper bound on the 
value of the objective function of the KP. If we knew a feasible binary solution, its 
objective value would be a lower bound on the value of the objective function, but 
none is assumed here, so the lower bound is set to -00. There is as yet no incumbent, 
which is the best feasible integer solution found thus far. 

At node 1, y2 is the only fractional variable, and hence any feasible integer solu- 
tion must satisfy either y2 = 0 or y2 = 1. We create two new relaxations represented by 
nodes 2 and 3 by imposing these two integer constraints. The process of creating these 
two relaxed subproblems is called branching. The feasible regions of these two LPs are 
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Continuous LP optimum 
Upper bound = 129.1 
Lower bound = - w 

No incumbent 

FIGURE E9.1 
Decomposition of Example 9.1 via the branch-and-bound method. 

Upper bound = 129.1 
Lower bound = 126.0 
Incumbent = (1,07 1) 

2 3 
O I y  < I  1 - * OIy, I 1  

Y2 = 0 Upper bound = 128.1 1 Y2 = 1 
0 1 y 3 1 1  Lower bound = 126.0 0 Y3 I 1 

Y* = (Lo, 1) y* = (0.978, 1, 1) 
f = 126.0 . f = 128.11 

IP optimum 

partitions of the feasible region of the original IP, and one (or both) contain an optimal 
integer solution, if one exists (the problem may not have a feasible integer solution). 

If the relaxed IP problem at a given node has an optimal binary solution, that solu- 
tion solves the IP, and there is no need to proceed further. This node is said to be fath- 
omed, because we do not need to branch from it. If a relaxed LP problem has several 
fractional values in the solution, you must select one of them to branch on. It is impor- 
tant to make a good choice. Branching rules have been studied extensively (see 
Nemhauser and Wolsey, 1988). Finally, if the node 1 problem has no feasible solution, II 
the original IP is infeasible. At this point, the two nodes resulting from branching are 
unfathomed, and you must decide which to process next. How to make the decision has 
been well studied (Nemhauser and Wolsey, 1988, Chapter II.4). 

4 
Y1 = o  
Y 2 =  1 
0 I y 3 I l  

Y* = (0, 1, 1) 
f = 44.0 

Node 2. For this example we choose node 2 and find that the solution to the 
relaxed problem is a binary solution, so this node is now fathomed. The solution is the 

\ 

5 
Y1 = 1 
Y 2 =  1 
0 I y 3 I l  
y* = (1, 1,0.595) 
f = 113.81 
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first feasible integer solution found, so its objective value of 126.0 becomes the current 
lower bound. The difference (ub - lb) is called the "gap," and its value at this stage is 
129.1 - 126.0 = 3.1. It is common to terminate the BB algorithm when 

When the gap is smaller than some fraction to1 of the incumbent's objective value (the 
factor 1.0 ensures that the test makes sense when lb = 0). When lb = - oo, you will 
always satisfy Equation 9.1. A to1 value of lo4 would be a tight tolerance, 0.01 would 
be neither tight nor loose, and 0.03 or higher would be loose. The termination criterion 
used in the Microsoft Excel Solver has a default to1 value of 0.05. 

Node 3. The solution of the problem displayed in node 3 is fractional with a 
value of the objective function equal to 128.1 1, so the upper bound for this node and 
all its successors is 128.11. The gap is now 2.1 1, so gapl[l + abs(lb)] = 0.0166. If 
to1 in Equation (9.1) is larger than this, the BB algorithm stops. Otherwise, we create 
two new nodes by branching on y,. 

Node 4. Node 4 has an integer solution, with an objective function value of 44, 
which is smaller than that of the incumbent obtained previously. The incumbent is 
unchanged, and this node is fathomed. 

Node 5. Node 5 has a fractional solution with an objective function value of 
113.81, which is smaller than the lower bound of 126.0. Any successors of this node 
have objective values less than or equal to 113.81 because their LP relaxations are 
formed by adding constraints to the current one. Hence we can never find an integer 
solution with objective value higher than 126.0 by further branching from node 5, so 
node 5 is fathomed. Because there are no dangling nodes, the problem is solved, with 
the optimum corresponding to node 2. 

EXAMPLE 9.2 BLENDING PRODUCTS INCLUDING DISCRETE 
BATCH SIZES 

In this example we have two production units in a plant designated number 1 and 
number 2, making products 1 and 2, respectively, from the three feedstocks as shown 
in Figure E9.2a. Unit 1 has a maximum capacity of 8000 lblday, and unit 2 of 10,000 
lblday. To make 1.0 lb of product 1 requires 0.4 1b of A and 0.6 lb of B; to make 1.0 
lb of product 2 requires 0.3 lb of B and 0.7 lb of C. A maximum of 6000 lblday of B 
is available, but there are no limits on the available amounts of A and C. Assume the 
net revenue after expenses from the manufacture of product 1 is $O.l6Ab, and of prod- 
uct 2 is $0.20Ab. How much of products 1 and 2 should be produced per day, assum- 
ing that each must be made in batches of 2000 lb? 

This problem is best formulated by scaling the production variables x, and x, to 
be in thousands of pounds per day, and the objective function to have values in thou- 
sands of dollars per day. This step ensures that all variables have values between 0 and 
10 and often leads to both faster solutions and more readable reports. We formulate 
this problem as the following mixed-integer linear programming problem: 

Maximize: f = 0 . 1 6 ~ ~  + 0 . h  
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Subject to: xi = 2yi i = 1,2 

0.6~1 + 0 . 3 ~ ~  5 6 

0 5 y, 1 4 0 1 y ,  1 5 y, integer (c) 

Constraints (a) ensure that the scaled production amounts are even integers because 
the y, are general integers subject to the bounds (c). The bounds on xi are also implied 
by (a) and (c), and the xi need not be declared an integer because they will be an inte- 
ger if the y, are. 

A BB tree for this problem is in Figure E9.2b. The numbers to the left of each 
node are the current upper and lower bounds on the objective function, and the values 
to the right are the (y,, y,) values in the optimal solution to the LP relaxation at the 
node. The solution at node 1 has y ,  fractional, so we branch on y,, leading to nodes 2 
and 3. If node 2 is evaluated first, its solution is an integer, so the node is fathomed, 
and (2, 5) becomes the incumbent solution. This solution is optimal, but we do not 

Feedstocks Production units 

, 
FIGURE E9.2a 
Flow chart of a batch plant. 

Upper bound, Lower bound 

FIGURE E9.2b 
Branch-and-bound tree. 
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max .16xl+.2x2 0.16 - -0.2 - - I 2.64 

FEURE E9.2~ 
Excel formulation for Example 9.2. Pemission by Microsoft. 

Cell: 

Close 

@sat All 

FIGURE E9.2d 
Solver dialog for ExampIe 9.2. Permission by Microsoft. 

know that yet. Evaluating node 3, its solution is also an integer, so it i s  fathomed. Its 
solution has an objective function value of 2.56, smaller than the incumbent, so ( 2 ,5 )  
has been proven optimal. It is possible for a BB algorithm to discover an optima1 solu- 
tion at an early stage, but it may take many more steps to prove that it is optimal. 

An Excel spreadsheet formulation of this problem is shown in Figures E9.2c and 
E9.2d. The constraint coefficient matrix is in the range CFO:FI 2 and G10:G12 con- 
tains formulas that compute the values of the constraint functions. These formulas use 
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seconds 
w 

Tolerance: 15 

r godel - ................................. ., .......... "l...* - 
:Assume Non-Negative i 
\ ........................... .......................  hew : 

r Quad 
, L 

Iteration 
Search - 

.. 

Scaling 

FIGURE E9.2e 
Solver options dialog box. Permission by Microsoft. 

the Excel SUMPRODUCT function to compute the inner product of the row of con- 
straint coefficients with the variable values in C5:F5. The optimal solution is the same 
as found previously in the tree of Figure E9.2b, 

The Excel Solver solves MTLP and MTNCP problems using a BB algorithm (Fyl- 
stra et al., 1998). If the "assume linear model" box is checked in the OPTIONS dia- 
log, the LF simplex solver is used to solve the LP relaxations; if not, the GRG2 non- 
linear solver is used. This dialog is shown in Figure E9.2e. The value in the 
"Tolerance" box is the value of the to1 in Equation (9. I ) ,  As shown in the figure, the 
default toIerance value is 0.05. This is a loose" value because the BB process stops 
when the "gap" satisfies Equation (9.1) with tol = 0.05. The final solver solution can 
have an objective value that is as much as 5% worse than the optimal value. Users 
who are unaware of the meaning of the tolerance setting often assume that this final 
solution is optimal. For problems with few integer variables, you can safely use a 
tighter tolerance, for example, 0.1%, because such probIerns are usually solved 
quickly. For larger problems (e.g., more than 20 binary or integer variables), you can 
solve first with a loose tolerance. If this effort succeeds quickly, try again with a 
smaller tolerance. 

If you request a sensitivity report after the solver has solved this example, the 
message "Sensitivity report and limits report are not meaningful for problems with 
integer constraints" appears (try it and see). A sensitivity report is "not meaningful" 
for a mixed-integer problem because Lagrange multipliers may not exist for such 
problems. To see why, recall that, in a problem with no integer variables, the Lagrange 
multiplier for a constraint is the derivative of the optimal objective value (OV) within 
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the OV. In other words, the OV function may not be differentiable at some points. As 
an example, consider the constraint 

As shown in Figure E9.2c, this constraint is not active at the optimal solution because 
its left-hand side value is 5.4. Hence if its right-hand side is changed from 6 to 5.4, 
the optimal solution is unchanged. Now decrease this right-hand side (RHS) just a tiny 
bit further, to 5.3999). The new optimal objective value (OV) is 2.32, sharply worse 
than the OV of 2.64 when the RHS is 5.4. This OV change occurs because the small 
RHS decrease does not allow both x, and x, to retain their current values of 4 and 10, 
respectively. One or both must decrease, and because both are even integers, each 
must decrease by a value of 2. A small fractional change is not possible. The best pos- 
sible change is to have x, = 2 while x, remains at 10. The ratio of OV change to RHS 
change is 

AOV -- - -0.32 
= 3200 

ARHS -0.0001 

Clearly as ARHS approaches zero the limit of this ratio does not exist; the ratio 
approaches infinity because AOVremains -0.32. Hence the function OV(RHS) is not 
differentiable at RHS = 5.4, so no Lagrange multiplier exists at this point. 

We now ask the reader to start Excel, either construct or open this model, and 
solve it after checking the "Show Iteration Results" box in the Solver Options dialog 
(see Figure E9.2d). The sequence of solutions produced is the same as is shown in the 
BB tree of Figure E9.2b. The initial solution displayed has all four variables equal to 
zero, indicating the start of the LP solution at node 1. After a few iterations, the opti- 
mal node 1 solution is obtained. The solver then creates and solves the node 2 sub- 
problem and displays its solution after a few simplex iterations. Finally, the node 3 
subproblem is created and solved, after which an optimality message is shown. 

9.3 SOLVING MINLP PROBLEMS USING 
BRANCH-AND-BOUND METHODS 

Many problems in plant design and operation involve both nonlinear relations 
among continuous variables, and binary or integer variables that appear linearly. 
The continuous variables typically represent flows or process operating conditions, 
and the binary variables are usually introduced for yes-no decisions. Such prob- 
lems can be written in the following general form: 

Minimize: z = f (x) + cTy (9.2) 

Subject to: h(x) = 0 

where x is the vector of continuous variables, y is the vector of integer (usually 
binary) variables, M is a matrix, and X and Yare sets. The y's are typically chosen 



362 PART 11: Optimization Theory and Methods 

to control the continuous variables x by either forcing one (or more) variables to be 
zero or by allowing them to assume positive values. The choice of y should be done 
in such a way that y appears linearly, because then the problem is much easier to 
solve. The constraints (9.3) represent mass and energy balances, process input- 
output transformations, and so forth. The inequalities (9.4) are formulated so that y 
influences x in the desired way-we illustrate how to do this in several examples 
that follow. The set X is specified by bounds and other inequalities involving x only, 
whereas Y is defined by conditions that the components of y be binary or integer, 
plus other inequalities or equations involving y only. 

As discussed in Section 9,2, the Excel Solver uses a BB algorithm to solve 
MILP problems. It uses the same method to solve MINLP problems. The only dif- 
ference is that for MINLP problems the relaxed subproblems at the nodes of the BB 
tree are continuous variable NLPs and must be solved by an NLP method. The 
Excel Solver uses the GRG2 code to solve these NLPs. GRG2 implements a GRG 
algorithm, as described in Chapter 8. 

BB methods are guaranteed to solve either linear or nonlinear problems if 
allowed to continue until the "gap" reaches zero [see Equation (9. I)], provided that 
a global solution is found for each relaxed subproblem at each node of the BB tree. 
A global optimum can always be found for MILPs because both simplex and inte- 
rior point LP solvers find global solutions to LPs because LPs are convex pro- 
gramming problems. In MINLP, if each relaxed subproblem is smooth and convex, 
then every local solution is a global optimum, and for these conditions many NLP 
algorithms guarantee convergence to a global solution. 

Sufficient conditions on the functions in the general MINLP in Equations 
(9.2)-(9.5) to guarantee convexity of each relaxed subproblem are 

1. The objective termflx) is convex. 
2. Each component of the vector of equality constr4nt functions h(x) is linear. 
3. Each component of the vector of inequality constraint functions g(x) is convex 

over the set X. 
4. The set X is convex. 
5. The set Y is determined by linear constraints and the integer restrictions on y. 

If these conditions hold, and an arbitrary subset of y variables are fixed at integer 
values and the integer restrictions on the remaining y's are relaxed, the resulting 
continuous subproblem (in the x and relaxed y variables) is convex. Although 
many practical problems meet these conditions, unfortunately many do not, often 
because some of the equality constraint functions h(x) are nonlinear. Then you 
cannot guarantee that the feasible region of each relaxed subproblem is convex, 
so local solutions may exist that are not global solutions. Consequently, a local 
NLP solver may terminate at a local solution that is not global in some tree node, 
and, in a minimization problem, the objective function value (call it "local") is 
larger than the true optimal value. When the "local" value is tested to see if it 
exceeds the cuirent upper bound, it may pass this test, and the node will be clas- 
sified as "fathomed." No further branches are allowed from this node. The "fath- 
omed" classification is false if the true global optimal value at the node is less 
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than the current upper bound. Thus, the BB procedure fails to find any better solu- 
tions reached by further branching from this node. A nonoptimal solution to the 
MINLP may result. 

EXAMPLE 9.3 OPTIMAL SELECTION OF PROCESSES 

This problem, taken from Floudas (1995), involves the manufacture of a chemical C 
in process 1 that uses raw material B (see Figure E9.3a). B can either be purchased or 
manufactured via two processes, 2 or 3, both of which use chemical A as a raw mate- 
rial. Data and specifications for this example problem, involving several nonlinear 
input4utput relations (mass balances), are shown in Table E9.3A. We want to deter- 
mine which processes to use and their production levels in order to maximize profit. 
The processes represent design alternatives that have not yet been built. Their fixed 
costs include amortized design and construction costs over their anticipated lifetime, 
which are incurred only if the process is used. 

To model this problem as a MINLP problem, we first assign the continuous vari- 
ables to the different streams to represent the flows of the different chemicals. A2 and 
A3 are the amounts of A consumed by processes 2 and 3, B2 and B3 are the amounts 
of B produced by these processes, BP is the amount of B purchased in an external 
market, and C1 is the amount of C produced by this process. We also define the 0-1 
variables, Y1, Y2, and Y3 to represent the existence of each of the processes. 

The constraints in this problem are 
1. Conversion 

2. Mass balance for B 

The specifications and limits that apply are as follows: 
3. Nonnegativity condition for continuous variables 

A2,A3, B1, B2, B3, BP, C1 2 0 

4. Integer constraints 

Yl,Y2,Y3 = Oor 1 

5. Maximum demand for C 

C1 5 1 

6. Limits on plant capacity 

B2 5 4Y2 

B3 5 5Y3 

C1 5 2Y1 
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TABLE E9.3A 
Problem data 

Conversions: Process 1 C = 0.9B 
Process 2 B = ln(1 + A) 
Process 3 B = 1.2 ln(1 + A) 

(A, B, C, in todh) 

Maximum capacity: 

Prices: 

Process 1 2 todhofC 
Process 2 4todhofB 
Process 3 5todhofB 

Demand of C: 1 todh maximum 

Fixed Variable 
(103 $/h) (103 $/ton of product) 

Costs: Process 1 3.5 
Process 2 1 
Process 3 1.5 

Note that the constraints in (f) place an upper limit of zero on the amounts pro- 
duced if a process is not selected and impose the true upper limit if the process is 
selected. Clearly, with the bounds in step 3, this means that the amounts of B2, B3, 
and C1 are zero when their binary variables are set to zero. If a binary variable is one, 
the amounts produced can be anywhere between zero and their upper limits. 

Finally, for the objective function, the terms for the profit PR expressed in $103/h 
are given as follows: 

1. Income from sales of product C: 13C 
2. Expense for the purchase of chemical B: 7BP 
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3. Expense for the purchase of chemical A: 1.8A2 + 1.8A3 
4. Annualized investment or fixed cost for the three processes: 

Note that in the preceding expression the fixed charges are multiplied by the 
binary variables so that these charges are incurred only if the corresponding process 
is selected. Combining the preceding terms yields the following objective function: 

Maximize PR = 11C1 - 3.5Y1 - Y2 - B2 - 1.5Y3 - 1.2B3 

Relations (a)-(g) define the MINLP problem. It is important to note that the rela- 
tions between the binary and continuous variables in Equation (f) are linear. It is pos- 
sible to impose the desired relations nonlinearly. For example, one could replace C1 
by Cl * Y1 everywhere C1 appears. Then if Y1 = 0, C1 does not appear, and if Y1 = 
1, C1 does appear. Alternatively, one could replace C1 by the conditional expression 
(if Y1 = 1 then C1 else 0). Both these alternatives create nonlinear models that are 
very difficult to solve and should be avoided if possible. 

Solution. Figure ~ 9 . 3 b  shows the implementation of the MINLP problem in Excel 
Solver. The input-output relations (a)  are in cells F18:F20, and the mass balance (b) 
is in F22, both written in the form 'Xx) = 0." The left- and right-hand sides of the 
plant capacity limits (f) are in C25:C27 and F25:F27, respectively. The Solver param- 
eter dialog box is in Figure E9.3~. Nonnegativity constraints are imposed by check- 
ing the "Assume Nonnegative" box in the options dialog box. 

The optimal solution has Y1 = Y3 = 1, Y2 = 0, so only processes 1 and 3 are 
used. Because BP = 0, there is no purchase of chemical B from an outside source. 
Total costs are 11.077 (in thousands of dollars per hour), revenues are 13, and the 
maximum profit is 1.923. 

Given the optimal result, we now can ask a number of questions about the 
process operations, such as 

1. Why is process 3 used instead of 2? 
2. What happens if the cost of chemical A changes? 
3. Why is no B purchased? 

These questions can be answered, respectively, by carrying out the following steps: 

1. Rerun the base case with Y2 fixed at 1 and Y3 at 0, thus forcing process 2 to be 
used rather than 3 while optimizing over the continuous flow variables. 

2. Change the cost of A, and reoptimize. 
3. Change the cost of purchased B, and reoptimize. 

The link between the Excel Solver and the Excel Scenario Manager makes saving and 
reporting case study information easier. After solving each case, click the "Save Sce- 
nario" button on the dialog box that contains the optimality message, which invokes 
the Excel Scenario Manager. This stores the current decision variable values in a sce- 
nario named by the user. After all of the desired scenarios are generated, you can pro- 
duce the Scenario Summary shown in Table E9.3B by selecting "Scenario Manager" 
from the Tools menu and choosing "Summary" from the Scenario Manager dialog. 
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FIGURE E9.3b 
Excel Solver model. Permission by Microsoft. 



c H A PTER 9: Mixed-Integer Programming 367 
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FIGURE E9.3~ 
Solver parameter diaIog box:Pemission by Microsoft. 

Examination of the "2 instead of 3" column in Table E9.3B shows that process 3 
has higher fixed and variable operating costs than 2 (3.33 compared with 3.1 T ) but is 
more efficient because its output of B is 1.2 times that of process 2. This higher efi- 
ciency leads to lower raw material costs for chemical A (A3 cost i s  2.744, and A2 cost 
is 3.668). This more than offsets the higher operating cost, leading to lower total costs 
and a larger net profit. This analysis clearly shows that the choice between processes 
2 and 3 depends on the cost of A. If the cost of A is reduced enough, process 2 should 
be preferred. The two "'acost" columns in Table E9.3B show that a reduction of A's 
cost to 1, -5 reduces the cost but leaves process 3 as the best choice, but a further reduc- 
tion to 1.0 switches the optimal choice to process 2. 

The last row of Table E9.3B shows why no chemical B is purchased. The cost per 
unit of B produced is computed by adding the cost of A purchased to the sum of the 
fixed and variable operating costs (processes 2 and 3) and dividing by the amount of 

.B produced. In the base case this cost is $2555/ton, so that the market price of B must 
be lower than this value for an optimal solution to choose purchasing B to producing 
it. The current price of B is 7, far above this threshold. The "BPcost=2" column of 
Table E9.3B shows that if B's market price is reduced to 2, the maximum profit is 
attained by shutting down both processes 2 and 3 and purchasing B. 

Of course, a BB method can find an optimal solution even when the MINLP does 
not satisfy the convexity conditions. That occurred in Example 9.3, even though the 
equality constraints were nonlinear. The GRG2 solver did find global solutions at 
each node. An optimal solution cannot be guaranteed for nonconvex MINLPs, how- 
ever* if a local NLP solver is used. As global: optimization methods improve, future 
BB software may include a global NLP solver and thus ensure optimality. Currently, 
the main drawback to using a global optimizer in a BB algorithm is the long time 
required to find a global solution to even moderately-sized nonconvex NLPs. 



Scenario summary 

Changing cells Base 2 instead of 3 acost = 1 acost = 1.5 BPcost =2 

1. A2=consumption of chemical A in process 2 
2. A3=consumption of chemical A in process 3 
3. B2=production of chemical B by process 2 
4. B3=production of chewal  B by process 3 
5. BP=amount of B purchased in external market 
6. B1 =consumption of B by process 1 
7. C1 =amount of C produced by process 1 
1. Y1 = on-off for process 1 
2. = on-off for process 2 
3. Y3 = on-off for process 3 

Result cells 
Revenue 
Fixed cost 

Subtotal 
Operating cost 
C1 
B2 
B3 
Subtotal 
Raw material costs 
A2 cost 
A3 cost 
BP cost 
Subtotal 
Total cost 
Net profit 

Unit cost of B produced 
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9.4 SOLVING MINLPs USING OUTER APPROXIMATION 

The "outer approximation" (OA) algorithm has been described by Duran and Gross- 
man (1986) and Floudas (1995). It is implemented in software called DICOPT, which 
has an interface with GAMS. Each major iteration of OA involves solving two 
subproblems: a continuous variable nonlinear program and a linear mixed-integer 
program. Using the problem statement in Equations (9.2)-(9.5), the NLP subprob- 
lem at major iteration k, NLP(yk), is formed by fixing the integer y variables at 
some set of values, say yk E Y, and optimizing over the continuous x variables; 

Problem NLP ( yk) 

Maximize: cTyk + f (x) (9.6) 

Subject to: h (x) = 0 

We redefined the sense of the optimization to be maximization. The optimal objec- 
tive value of this problem is a lower bound on the MINLP optimal value. The MILP 
subproblem involves both the x and y variables. At iteration k, it is formed by lin- 
earizing all nonlinear functions about the optimal solutions of each of the subprob- 
lems NLP (yi), i = 1, . . . , k, and keeping all of these linearizations. If xi solves 
NLP(yi), the MILP subproblem at iteration k is 

MILP subproblem 

Maximize: cTy + z (9.8) 

T i  Subject to: z 2 f(xi) + Vf (X )(x - xi), i = 1, ... , k 

The new variable z is introduced to make the objective linear. 

Minimize: cT9 + z 

Subject to: z 3 f (x) 

is equivalent to minimizing cTy + f (x). Duran and Grossman (1986) and Floudas 
(1995) show that if the convexity assumptions ( 1 x 5 )  of Section 9.3 hold, then the 
optimal value of this MILP subproblem is an upper bound on the optimal MlNLP 
objective value. Because a new set of linear constraints is added at each iteration, this 
upper bound decreases (or remains the same) at each iteration. Under the convexity 
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TABLE 9.1 
DICOPT iteration log 

Major step Major Objective NLP or MILP 
iteration function CPU time (s) iterations Solver 

NLP 1 5.32542 0.17 8 CONOPT2 
MEP 1 2.44260 0.16 16 OSL 
NLP 2 1.72097 0.1 1 3 CONOPT2 
MILP 2 2.20359 0.16 17 OSL 
NLP 3 1.923 10 0.11 3 CONOPT2 
MILP 3 1.44666 0.17 24 OSL 
NLP 4 1.41100 0.11 8 CONOPT2 

assumptions, the upper and lower bounds converge to the true optimal MINLP value 
in a finite number of iterations, so the OA algorithm solves the MINLP problem. 

Table 9.1 shows how outer approximation, as implemented in the DICOPT 
software, performs when applied to the process selection model in Example 9.3. 
Note that this model does not satisfy the convexity assumptions because its equal- 
ity constraints are nonlinear. Still DICOPT does find the optimal solution at itera- 
tion 3. Note, however, that the optimal MILP objective value at iteration 3 is 1.446, 
which is not an upper bound on the optimal MINLP value of 1.923 because the con- 
vexity conditions are violated. Hence the normal termination condition that the dif- 
ference between upper and lower bounds be less than some tolerance cannot be 
used, and DICOPT may fail to find an optimal solution. Computational experience 
on nonconvex problems has shown that retaining the best feasible solution found 
thus far, and stopping when the objective value of the NLP subproblem fails to 
improve, often leads to an optimal solution. DICOPT stopped in this example 
because the NLP solution at iteration 4 is worse (lower) than that at iteration 3. 

The NLP solver used by GAMS in this example is CONOPT2, which imple- 
ments a sparsity-exploiting GRG algorithm (see Section 8.7). The mixed-integer 
linear programming solver is IBM's Optimization Software Library (OSL). See 
Chapter 7 for a list of commercially available MILP solvers. 

9.5 OTHER DECOMPOSITION APPROACHES FOR MINLP 

Generalized Benders decomposition (GBD), derived in Geoffrion (1972), is an 
algorithm that operates in a similar way to outer approximation and can be applied 
to MINLP problems. Like OA, when GBD is applied to models of the form (9.2)- 
(9.3, each major iteration is composed of the solution of two subproblems. At 
major iteration k, one of these subproblems is NLP(yk), given in Equations (9.6)- 
(9.7). This is an NLP in the continuous variables x, with y fixed at yk. The other 
GBD subproblem is an integer linear program, as in OA, but it only involves the 
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discrete variables y, whereas the MILP of OA involves both x and y. The con- 
straints of the GBD MIP subproblem are different from those in the OA MILP sub- 
problem. These constraints are called generalized Benders cuts. They are linear 
constraints, formed using the Lagrange multipliers of the continuous subproblem, 
NLP(yk). Only one GBD cut is added at each major iteration. In OA, an entire set 
of linearized constraints of the form (9.9) is added each time, so the OA MILP sub- 
problems has many more constraints than those in GBD. Each solution of the NLP 
subproblem in GBD generates a lower bound on the maximum objective value, and 
the MILP subproblem yields an upper bound. Duran and Grossman (1986) proved 
that for convex MINLP problems the OA upper bound is never above the GBD 
lower bound [see also Floudas (1995)l. Hence, for convex problems OA terminates 
in fewer major iterations than GBD. The OA computing time may not be smaller 
than that for GBD, however, because the OA subproblems have more constraints 
and thus usually take longer to solve. 

9.6 DISJUNCTIVE PROGRAMMING 

A disjunctive program is 'a special type of MINLP problem whose constraints 
include the condition that exactly one of several sets of constraints must be satis- 
fied (Raman and Grossmann, 1994). Defining v as the logical "exclusive or" oper- 
ator and Yi as logical variables (whose values are true or false), an example of a dis- 
junctive program, taken from Lee and Grossman (2000), is 

Minimize: (x, - 3)2 + (x2 - 2)2 + c 

and 

0 5 xi 5 8, i = 1,2 

The logical condition, called a disjunction, means that exactly one of the three sets of 
conditions in brackets must be true: the logical variable must be true, the constraint 
must be satisfied, and c must have the specified value. Note that c appears in the 
objective function. There are additional constraints on x; here these are simple 
bounds, but in general they can be linear or nonlinear inequalities. The single inequal- 
ity constraint in each bracket may be replaced by several different inequalities. There 
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may also be logical constraints on the Yi variables, but these constraints are not 
included in this example. 

Disjunctions arise when a set of alternative process units is considered during 
a process design. The following example is taken from Biegler et al. (1997), p. 519. 
If one of two reactors is to be selected, we may have the conditions: 

If reactor one is selected, then pressure P in the reactor must lie between 10 and 
15, and the reactor fixed cost c is 20. 
If reactor two is selected, then pressure P in the reactor must be between 5 and 10 
and the reactor fixed cost c is 30. 

See Hooker and Grossman (1999) for more details on occurrence of disjunctions in 
process synthesis problems. 

A generalized disjunctive program (GDP) may be formulated as an MINLP, with 
binary variables yi replacing the logical variables Yi. The most common formulation 
is called the "big-A4" approach because it uses a large positive constant denoted by M 
to relax or enforce the constraints. This formulation of the preceding example follows: 

Minimize: (x, - 3)2 + (x, - 2)2 + 5, + y2 + 3y3 

Subject to: xt  + x: - 1 5 M(l - y,) 

and 

When yi = 1, the ith constraint is enforced and the correct value of c is added to the 
objective. When yi = 0, the right-hand side of the ith constraint is equal to M, so it 
is never active if M is large enough. The constraint that sets the sum of the yi equal 
to 1 ensures that exactly one constraint is enforced. 

The big-M formulation is often difficult to solve, and its difficulty increases as 
M increases. This is because the NLP relaxation of this problem (the problem in 
which the condition yi = 0 or 1 is replaced by yi between 0 and 1) is often weak, 
that is, its optimal objective value is often much less than the optimal value of the 
MINLP. An alternative to the big-M formulation is described in Lee and Grossman 
(2000) using an NLP relaxation, which often has a much tighter bound on the opti- 
mal MINLP value. A branch-and-bound algorithm based on this formulation per- 
formed much better than a similar method applied to the big-M formulation. An 
outer approximation approach is also described by Lee and Grossmann (2000). 
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PROBLEMS 

9.1 A microelectronics manufacturing facility is considering six projects to improve oper- 
ations as well as profitability. Due to expenditure limitations and engineering staffing 
constraints, however, not all of these projects can be implemented. The following table 
gives projected cost, staffing, and profitability data for each project. 

- -- 

First-year Second-year Net 
expenditure expenditure Engineering present 

Project Description ($1 6) hours value ($) 

1 Modify existing 
production line 
with new etchers 300,000 0 4000 100,000 

2 Build new 
production line 100,000 300,000 7000 150,000 

3 Automate new 
production line 

4 Install plating line 50,000 100,000 6000 75,000 

5 Build waste 
recovery plant 50,000 300,000 3000 125,000 

6 Subcontract 
waste disposal 100,000 200,000 600 60,000 

The resource limitations are 

First-year expenditure: $450,000 
Second-year expenditure: $400,000 
Engineering hours: 10,000 
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A new or modernized production line must be provided (project 1 or 2). Automa- 
tion is feasible only for the new line. Either project 5 or project 6 can be selected, but 
not both. Determine which projects maximize the net present value subject to the var- 
ious constraints. 

9.2 An electric utility must determine which generators to start up at the beginning of each 
day. They have three generators with capacities, operating cost, and start-up costs shown 
in the following table. A day is divided into two periods, and each generator may be 
started at the beginning of each period. A generator started in period 1 may be used in 
period 2 without incurring an additional start-up cost. All generators are turned off at the 
end of the day. 

Demand for power is 2500 megawatts (MW) in period 1 and 3500 MW in period 
2. Formulate and solve this problem as a mixed-integer linear program. Define the 
binary variables carefully. 

Fixed start-up Cost per period Generator capacity in 
Generator cost ($1 per megawatt each period (MW) 

9.3 An electric utility currently has 700 MW of generating capacity and needs to expand 
this capacity over the next 5 years based on the following demand forecasts, which 
determine the minimum capacity required. 

Year Minimum capacity (MW) 

Capacity is increased by installing lo-, 50-, or 100-MW generators. The cost of 
installation depends on the size and year of installation as shown in the following 
table. 

Generator size (MW) Year 1 Year 2 Year 3 Year 4 Year 5 

Once a generator is installed, it is available for all future years. Formulate and solve the 
problem of determining the amount of new capacity to install each year so that minimum 
capacities are met or exceeded and total (undiscounted) installation cost is minimized. 

9.4 A manufacturing line makes two products. Production and demand data are shown in 
the following table. 
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Product 1 Product 2 
- - 

Set-up time (hrs) 6 11 
Set-up cost ($) 250 400 
Production timetunit (h) 0.5 0.75 
F'roduction codunit ($) 9 14 
Inventory holding cost/unit 3 .  3 
Penalty cost for unsatisfied demandfunit ($) 15 20 
Selling price ($/unit) 25 35 

Demand data 

Product Week 1 Week 2 Week 3 Week 4 

Total time available (for production and setup) in each week is 80 h. Starting inventory 
is zero, and inventory at the end of week 4 must be zero. Only one product can be pro- 
duced in any week, and the line must be shut down and cleaned at the end of each 
week. Hence the set-up time and cost are incurred for a product in any week in which 
that product is made. No production can take place while the line is being set up. 

Formulate and solve this problem as an MILP, maximizing total net profit over all 
products and periods. 

9.5 A portfolio manager has $100,000 to invest in a list of 20 stocks. She estimates the 
return from stock i over the next year as r(i), so that if x(i) dollars are invested in stock 
i at the start of the year, the end of year value is [ l  + r(i)]*x(i). Write an MILP 
model that determines the amounts to invest in each stock in order to maximize end- 
of-year portfolio value under the following investment policy: no more than $20,000 
can be invested in any stock, and if a stock is purchased at all, at least $5000 worth 
must be purchased. 

Maximize: f(x) = 75x1 + 6x2 + 3x3 + 33x4 

Subject to: 774x, + 76x2 + 22x3 + 42x4 5 875 

xl, x2,x3,x4 either 0 or 1 

Maximize : f (x) = 2xl + xz 

Subject to: x, + x, 5 5 

xl,x2 L 0 and integer 
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Minimize: f ( x )  = x ,  + 4x2 + 2x3 + 3x4 

Subject to: - X I  + 3x2 - x3 + 2x4 2 2 

X I  + 3x2 + X j  + Xq 2 3 

x, ,x ,  r 0 and integer 

x3,x4 2 0 

9.9 Determine the minimum sum of transportation costs and fixed costs associated with 
two plants and two customers based on the following data: 

Annual capacity Annual fixed charges 
Plant (in thousands) (in lo4) 

Customer (j) Demand (j) 

Customer ( j )  

Plant (i) 1 2 

Hint: The mathematical statement is 

Minimize: f ( x )  = x C F x ,  + C r y i  
i j i 

Subject to: E x i j  = D j ,  j = 1, ... ,n 
i 

where CT = unit transportation cost from plant i to customer j 
Cr = fixed cost associated with plant i 

xij = quantity supplied to customer j from plant i 
y, = 1 (plant operates); = 0 (plant is closed) 
Ai = capacity of plant i 
Dj = demand of customer j 
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9.10 Four streams are to be allocated to four extractors. The costs of each stream are 

Extractor 

Stream 1 2 3 4 

The symbol P means the transfer is prohibited. Minimize the total costs. 

Minimize: f(x) = lox1 + 1 lx2 
Subject to: 9x1 + 1 1x2 1 29 

x L 0 and integer 

Maximize: f = 5x1 + 8x2 + 6x3 
Subject to: 9x1 + 6x2 + lox3 5 14 

20x1 + 63x2 + lox3 5 110 

xi 2 0, integer 

Maximize: f = x l  + x2 + x3 
Subjectto: x 1  + 2x2 + 2x3 + 2x4 + 3x5 5 18 

2x1 + x2 + 2x3 + 3x4,+ 2x5 5 15 

XI - 6x4 1 0  

x2 - 8 ~ 5  5 0 

all xj L 0, integer 

9.14 A plant location problem has arisen. Two possible sites exist for building a new plant, 
A and B, and two customer locations are to be supplied, C and D. Demands and pro- 
duction/supply costs are listed as follows. 

Use the following notation to formulate the optimization problem, and solve it for 
the values of I, and I, as well as the values of Sw Each plant has a maximum capacity 
of 500 units per day. 
li = decision variable (0-1) associated with the decision to build, or not to build, a 

plant in a given location, and thus incurs the associated fixed daily cost. 
Cij = unit cost of supplying customer j from plant i. 
Ci = fixed daily cost of plant i 
Sij = quantity supplied from the ith plant to the jth customer 
Rj = requirement of jth customer 
Qi = capacity of proposed plant 
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Production and transport costs per unit: 

A t o C  $1.00 
A to D $3.00 
B to C $4.50 
B t oD  $1.00 

Fixed plant charges per day: Minimum demand (units per day): 

plant A $700 
plant B $610 

Customer C 200 
Customer D 250 

9.15 The ABC company runs two refineries supplying three markets, using a pipeline 
owned by the XYZ company. The basic charge for pipeline use is $80 per 1000 bar- 
rels. If more than 500 barrels are shipped from the refineries to one market, then the 
charge drops to $60 per 1000 barrels for the next 1500 barrels. If more than 2000 bar- 
rels are shipped from the refineries to market, then the subsequent charge is $40 per 
1000 barrels for any over the 2000. 

The objective is to meet demands at M I ,  M2, and M3, using supplies from R, and R2. 
Xij, = number of barrels from source i to destination j at price k. 
Cijk = shipping cost of Xij, 
I j ,  = 0-1 variable to indicate whether or not any product is delivered to destination j 

at price level k. 

We can state the general problem briefly as follows: 

Minimize: ECvpvk 
ijk 

(1) 

Subject to: Exvk I Mj for all j (must meet demands) 
ik 

(2) 

and: Exij, 5 R for all i (= sources) (cannot exceed supply) 
jk 

(3) 

Xxe2 - bj21j2 5 0 foral l j  (4) 
1 

E xvl - bjl l j2  2 0 for all j (if any taken at second price must first 
1 use all at top price) 

(5) 

Exv3 - bj31j3 5 0 forallj (6) 
1 

$xO2 - b,243 r 0 for all j (if any taken at third price must first 

use all at second price) 
(7) 

bjk = upper bound on product delivered to terminal j at kth price level. 

J2 5 1 for all j(upper bounds on integer variables) 

1j3 5 1 for all j 
(8) 

The detailed matrix for this problem is set out in Table P9.15. Solve for the Ii, values 
and the xijk values. 



TABLE P9.15 Variables 

x l l l  x112 x113 x121 x122 x123 x131 x132 x133 x211 x212 x213 x221 x222 x223 x231 x232 x233 112 113 122 123 132 133 

Upper bound 
Lower bound 
Objective 
DEM.Ml 
DEM.M2 
DEM.M3 
CAP.Rl 
CAP.R2 
MlMAXPl 
MlMINP2 
MlMAXP;? 
MlMAXP3 
M2MAXP1 
M2MINP2 

w M2MAXP2 
M2MAXP3 
M3MAXP1 
M3MINP2 
M3MAXP2 
M3MAXP3 
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