## ASSIGNMENT 6

CHE 3473

## Solution

## \#Problem 1:

9.4

We have the following properties for a mixture for mixing at constant $T$ and $P$ :
$U(T, P, \underline{x})=\sum N_{i} \underline{U}_{i}(T, P)$
$V(T, P, \underline{x})=\sum N_{i} \underline{V}_{i}(T, P)$
$S(T, P, \underline{x})=\sum N_{i} \underline{S}_{i}(T, P)-R \sum N_{i} \ln x_{i}$
and $\underline{S}_{i}=\underline{S}_{i}^{0}+C_{\mathrm{V}, i} \ln \frac{U_{i}}{\underline{U}_{i}^{0}}+R \ln \frac{V_{i}}{\underline{V}_{i}^{0}}$
$\underline{S}_{i}^{0}, \underline{U}_{i}^{0}, \underline{V}_{i}^{0}$ are at some reference state.
(a) Find $\bar{V}_{i}, \bar{U}_{i}, \bar{S}_{i}$ and $\bar{G}_{i}$ in terms of $\underline{S}_{i}^{0}, \underline{U}_{i}^{0}, \underline{V}_{i}^{0}, C_{\mathrm{V}, i}, R, T$, and $\underline{P}$. Need $\underline{U}_{i}, \underline{V}_{i}$.

We know $d \underline{U}=T d \underline{S}-\left.P d \underline{V} \rightarrow \frac{\partial \underline{S}}{\partial \underline{U}}\right|_{\underline{V}}=\frac{1}{T} ;\left.\frac{\partial \underline{S}}{\partial \underline{V}}\right|_{\underline{U}}=\frac{P}{T}$ and $\underline{S}_{i}=\underline{S}_{i}^{0}+C_{\mathrm{V}, i} \ln \frac{U_{i}}{\underline{U}_{i}^{0}}+R \ln \frac{\underline{V}_{i}}{\underline{V}_{i}^{0}}$ for pure component $i$.
$\left.\frac{\partial \underline{S}}{\partial \underline{U}}\right|_{\underline{V}}=\frac{1}{T}=C_{\mathrm{V}, i} \frac{1}{\underline{U}_{i}} \rightarrow \underline{U}_{i}=C_{\mathrm{V}, i} T$
$\left.\frac{\partial \underline{S}}{\partial \underline{V}}\right|_{\underline{U}}=R \frac{1}{\underline{V}_{i}}$ and $\left.\left.\left.\frac{\partial \underline{S}}{\partial \underline{V}}\right|_{\underline{U}} \cdot \frac{\partial \underline{U}}{\partial \underline{S}}\right|_{\underline{V}} \cdot \frac{\partial \underline{V}}{\partial \underline{U}}\right|_{\underline{S}}=-1$
$\left.\frac{\partial \underline{U}}{\partial \underline{S}}\right|_{\underline{V}}=\left.T \frac{\partial \underline{V}}{\partial \underline{U}}\right|_{\underline{S}}=-\left.\frac{1}{P} \Rightarrow \frac{\partial \underline{S}}{\partial \underline{V}}\right|_{\underline{U}}=T \cdot \frac{-1}{P}=-\left.1 \rightarrow \frac{\partial \underline{S}}{\partial \underline{V}}\right|_{\underline{U}}=\frac{R}{\underline{V}_{i}}=\frac{P}{T}$
$\Rightarrow \underline{V}_{i}=\frac{R T}{P}$
So $\bar{U}_{i}=\left.\frac{\partial U}{\partial N_{i}}\right|_{T, P, N_{j * i}}=\frac{\partial}{\partial N_{i}} \sum N_{i} C_{\mathrm{V}, i} T=C_{\mathrm{V}, i} T=\underline{U}_{i}$
$\bar{U}_{i}=C_{\mathrm{V}, i} T$
$\overline{V_{i}}=\left.\frac{\partial V}{\partial N_{i}}\right|_{T, P, N_{j \neq i}}=\frac{\partial}{\partial N_{i}} \sum N_{i} V_{i}=\frac{R T}{P}=\bar{V}_{i}=\underline{V}_{i}$
$\bar{S}_{i}=\left.\frac{\partial S}{\partial N_{i}}\right|_{T, P, N j \neq i}=\frac{\partial}{\partial N_{i}}\left(\sum N_{i} \underline{S}_{i}(T, P)-R \sum N_{i} \ln x_{i}\right)=\underline{S}_{i}-R \ln x_{i}$
$\bar{S}_{i}=\underline{S}_{i}^{o}+C_{v, i} \ln \frac{C_{v, i} T}{\underline{U}_{i}^{o}}+R \ln \frac{R T}{P \underline{V}_{i}^{o}}-R \ln x_{i}$

$$
\begin{gathered}
\bar{G}_{i}=\left.\frac{\partial G}{\partial N_{i}}\right|_{T, P, N j \neq i}=\left.\frac{\partial}{\partial N_{i}}(H-T S)\right|_{T, P, N j \neq i}=\left.\frac{\partial}{\partial N_{i}}(U+P V-T S)\right|_{T, P, N j \neq i} \\
\bar{G}_{i}=\bar{U}_{i}+P \bar{V}_{i}-\left.T \frac{\partial S}{\partial N_{i}}\right|_{T, P, N j \neq i}=\bar{U}_{i}+P \bar{V}_{i}-T \bar{S}_{i} \\
=C_{V, i} T+R T-T\left(\underline{S}_{i}^{o}+C_{v, i} \ln \frac{C_{v, i} T}{\underline{U_{i}^{o}}}+R \ln \frac{R T}{P \underline{V}_{i}^{o}}-R \ln x_{i}\right)
\end{gathered}
$$

b)

$$
\begin{aligned}
V & =\sum N_{i} V_{i}=\sum N_{i} \frac{R T}{P}=\frac{N R T}{P} \\
U & =\sum N_{i} \underline{U}_{i}=\sum N_{i} C_{V, i} T
\end{aligned}
$$

c)

$$
\begin{aligned}
H=U+P V= & \sum N_{i} \underline{U}_{i}+P \sum N_{i} \underline{V}_{i}=\sum N_{i}\left(\underline{U}_{i}+P \underline{V}_{j}\right)=\sum N_{i} \underline{H}_{i} \\
A=U-T S= & \sum N_{i} \underline{U}_{i}-T\left(\sum N_{i} \underline{S}_{i}(T, P)-R \sum N_{i} \ln x_{i}\right) \\
& =\sum N_{i}\left(\underline{U}_{i}-T \underline{S}_{i}+R T \ln x_{i}\right)=\sum N_{i} \underline{A}_{i}+R T \sum N_{i} \ln x_{i} \\
G=H-T S= & \sum N_{i} \underline{H_{i}}-T\left(\sum N_{i} \underline{S}_{i}(T, P)-R \sum N_{i} \ln x_{i}\right) \\
& =\sum N_{i}\left(\underline{H_{i}}-T \underline{S}_{i}\right)+R T \sum N_{i} \ln x_{i}=\sum N_{i} \underline{G}_{i}+R T \sum N_{i} \ln x_{i}
\end{aligned}
$$

## \#Problem 2:

9.6

As a preliminary note that, from Eqns. (6.4-27 and 28)

$$
\underline{H}(T, P)-\underline{H}^{I G}(T, P)=R T(Z-1)+\int_{\underline{V}=x}^{K-Z R T / P}\left[T\left(\frac{\partial P}{\partial T}\right)_{\underline{L}}-P\right] d \underline{V}
$$

and

$$
\underline{S}(T, P)-\underline{S}^{s G}(T, P)=R \ln Z+\int_{\underline{V}=x}^{\underline{\mathrm{K}}-z R T / P}\left[\left(\frac{\partial P}{\partial T}\right)_{\underline{V}}-\frac{R}{V}\right] d \underline{V}
$$

vdw E.O.S. $P=\frac{R T}{\underline{V}-b}-\frac{a}{\underline{V}^{2}}$ so

$$
\begin{aligned}
&\left(\frac{\partial P}{\partial T}\right)_{\underline{V}}=\frac{R}{\underline{V}-b} ; T\left(\frac{\partial P}{\partial T}\right)_{\underline{V}}-P=\frac{R T}{\underline{V}-b}-\frac{R T}{\underline{V}-b)}+\frac{a}{\underline{V}^{2}}=\frac{a}{\underline{V}^{2}} \\
&\left(\frac{\partial P}{\partial T}\right)_{\underline{V}}-\frac{R}{V}=\frac{R}{(V-b)}-\frac{R}{\underline{V}} ; \\
& \Rightarrow \underline{H}(T, P)-\underline{H}^{10}(T, P)=R T(Z-1)+\int_{\underline{V}=x}^{\underline{V}-z R T / P} \frac{a}{V^{2}} d \underline{V}=R T(Z-1)-\frac{a}{\underline{V}}=R T(Z-1)-\frac{R T A}{Z}
\end{aligned}
$$

and

$$
\begin{aligned}
\underline{S}(T, P)-\underline{S}^{J 6}(T, P) & =R \ln Z+\int_{\underline{V}-\infty}^{\underline{V}-2 \pi T / P}\left[\frac{R}{\underline{V}-b}-\frac{R}{\underline{V}}\right] d \underline{V} \\
& =R \ln Z+\left.R \ln \frac{(\underline{V}-b)}{\underline{V}}\right|_{\underline{Q}-\infty} ^{2 \pi / P}=R \ln (Z-B)
\end{aligned}
$$

Now on to solution of problem.
(a) $\underline{V}^{e x}=\underline{V}_{\operatorname{mix}}-\sum x_{i} \underline{V}_{t}=\frac{R T}{P}\left(Z_{\operatorname{mix}}-\sum x_{i} Z_{l}\right)=\Delta_{\max } \underline{V}$
$Z_{\max }=$ compressibility of mixture at $T$ and $P$
$\mathrm{Z}_{1}=$ compressibility of pure fluid $f$ at $T$ and $P$
Will leave answer to this part in this form since the analytic expression for $Z_{1}$ and $Z_{\min }$ (solution to cubic) is messy. Though it can be analytically and symbolically with a computer algebra program such as Mathcad, Mathematica, Maple, etc.)


$$
\begin{aligned}
& =R T\left(Z_{\text {mix }}-\sum x_{i} Z_{i}\right)+\sum R T\left(\frac{x_{i} A_{i}}{Z_{i}}\right)-\frac{R T A_{\text {mix }}}{Z_{\text {mix }}} \\
& =R T\left(Z_{\text {mix }}-\sum x_{i} Z_{i}\right)+R T\left(\sum \frac{x_{i} A_{i}}{Z_{i}}-\frac{A_{\text {mix }}}{Z_{\text {mix }}}\right) \\
& \underline{U}^{e x}=\left(H_{\text {mix }}-P \underline{V}_{\text {mix }}\right)-\sum x_{i}\left(H_{1}-P \underline{V}_{l}\right) \\
& =\left(\underline{H}_{\operatorname{mix}}-\sum x_{i} \underline{H}_{f}\right)-P\left(\underline{V}_{\operatorname{mix}}-\sum x_{i} \underline{V}_{l}\right) \\
& =R T\left(Z_{\text {mix }}-\sum x_{i} Z_{i}\right)+R T\left(\sum \frac{x_{i} A_{i}}{Z_{i}}-\frac{A_{\text {mix }}}{Z_{\text {mix }}}\right)-R T\left(Z_{\text {mix }}-\sum x_{i} Z_{i}\right) \\
& =+R T\left(\sum \frac{x_{i} A_{i}}{Z_{i}}-\frac{A_{\text {mix }}}{Z_{\text {mix }}}\right)
\end{aligned}
$$

(c) $\underline{S}_{\text {mix }}-\sum x_{i} S_{t}-R \sum x_{i} \ln x_{i}$
$=\underline{S}^{\text {ax}}$
$=P \ln \left(Z_{\text {mix }}-B_{\text {mix }}\right)-R\left[X_{l} \ln \left(Z_{t}-B_{l}\right)-R \sum x_{l} \ln x_{l}\right]$
$=R \ln \left(Z_{\text {mix }}-B_{\text {mix }}\right)-R \sum x_{[ }\left[\ln \left(Z_{i}-B_{i}\right)+\ln x_{i}\right]$
$=R \ln \left(Z_{\text {mix }}-B_{\text {mix }}\right)-R\left[x_{i}\left[\ln x_{l}\left(Z_{l}-B_{i}\right)\right]\right.$
$=R \ln \frac{Z_{\text {mix }}-B_{\text {mix }}}{\Pi_{I}\left(Z_{i}-B_{i}\right)^{x_{i}}}$
(d) $\underline{G}^{\alpha \pi}=\underline{H}^{\alpha}-T \underline{S}^{\omega}=R T\left(Z_{\operatorname{mix}}-\sum^{x_{i}} Z_{i}\right)+R T\left(\sum \frac{x_{i}, A_{i}}{Z_{i}}-\frac{A_{\text {mix }}}{Z_{\text {mix }}}\right)$

$$
\begin{gathered}
\quad-R T \ln \frac{Z_{\operatorname{mix}}-B_{\operatorname{mix}}}{\Pi\left(Z_{i}-B_{i}\right)^{x_{i}}} \\
\underline{A}^{\sigma}=\underline{U}^{\alpha}-T \underline{S}^{\alpha}=+R T\left(\sum \frac{x_{i} A_{i}}{Z_{i}}-\frac{A_{\operatorname{mix}}}{Z_{\operatorname{mix}}}\right)-R T \ln \frac{Z_{\operatorname{mix}}-B_{\operatorname{mix}}}{\prod_{i}\left(Z_{i}-B_{i}\right)^{x_{i}}}
\end{gathered}
$$

## \#Problem 3:

### 9.22

2 (a) The two-constant Redlich-Kister expansion, which leads to the two-constant Margules equation is

$$
\underline{G}^{\mathrm{ex}}=x_{1} x_{2}\left\{A+B\left(x_{1}-x_{2}\right)\right\}
$$

Thus

$$
\begin{equation*}
\frac{\underline{G}^{\mathrm{ex}}}{x_{1} x_{2}}=A+B\left(2 x_{1}-1\right) \tag{1}
\end{equation*}
$$

which is a linear function of $x$.
The form of the Wohl Equation which leads to the van Laar Equation is

$$
\underline{G}^{\mathrm{ex}}=\frac{2 R T a_{12} x_{1} q_{1} x_{2} q_{2}}{x_{1} q_{1}+x_{2} q_{2}}
$$

which can be rearranged to

$$
\begin{equation*}
\frac{x_{1} x_{2}}{\underline{G}^{\mathrm{ex}}}=\frac{x_{1} q_{1}+\left(1-x_{1}\right) q_{2}}{2 R T a_{12} q_{1} q_{2}} \tag{2}
\end{equation*}
$$

which is also a linear function of $x$. Equations (1) and (2) provide the justification for the procedure.
(b) The figure below is the required plot. Clearly, neither equation is an accurate fit of the data. [The 2-constant Wohl (or van Laar) equation plot of the data, i.e., the form of Eq. (2), is closest to being linear, and therefore should be the better of the two-constant fits of the data. The data can, however, be fit quite well with a 3-constant Redlich-Kister expansion-See Illustration 10.1-4]

\#Problem 4:
9.30
a)

$$
\begin{gathered}
\mathrm{i}:=0,1 . .10 \quad \mathrm{x}_{1}:=0.1 \cdot \mathrm{i} \\
\mathrm{fma}_{\mathrm{i}}:=\mathrm{x}_{1} \cdot \exp \left[1.06 \cdot\left(1-\mathrm{x}_{1}\right)^{2}\right] \cdot 1.126 \\
\mathrm{fm}_{1}:=\left(1-\mathrm{x}_{1}\right) \cdot \exp \left[1.06 \cdot\left(\mathrm{x}_{1}\right)^{2}\right] \cdot 0.847
\end{gathered}
$$

$$
\mathrm{X}=\begin{array}{|l|l|}
\hline & 0 \\
\hline 0 & 0 \\
\hline 1 & 0.1 \\
\hline 2 & 0.2 \\
\hline 3 & 0.3 \\
\hline 4 & 0.4 \\
\hline 5 & 0.5 \\
\hline 6 & 0.6 \\
\hline 7 & 0.7 \\
\hline 8 & 0.8 \\
\hline 9 & 0.9 \\
\hline 10 & 1 \\
\hline 1 & \mathrm{Ama}= \\
\hline 1 & \begin{array}{|l|l|}
\hline & 0.847 \\
\hline 1 & 0.77 \\
\hline 2 & 0.707 \\
\hline 3 & 0.652 \\
\hline 4 & 0.602 \\
\hline 5 & 0.552 \\
\hline 6 & 0.496 \\
\hline 7 & 0.427 \\
\hline 8 & 0.334 \\
\hline 9 & 0.2 \\
\hline 10 & 0 \\
\hline
\end{array} \\
\hline
\end{array}
$$


b) from equation (9.7-12), we have

$$
\begin{gathered}
H_{1}=\gamma_{1}\left(T, P, x_{1}=0\right) f_{1}^{L}=\exp \left[\frac{A}{R T}\left(1-x_{1}\right)^{2}\right] * 1.126=\exp (1.06) * 1.126\left(x_{1} \rightarrow 0\right) \\
H_{2}=\gamma_{2}\left(T, P, x_{2}=0\right) f_{2}^{L}=\exp \left[\frac{A}{R T}\left(x_{1}\right)^{2}\right] * 0.847=\exp (1.06) * 0.847\left(x_{2} \rightarrow 0\right)
\end{gathered}
$$

Because of this, the hypothetical pure component fugacity based on the Henry's law standard state for methyl acetate and methanol would be, respectively:
$\exp (1.06)^{*} 1.126=3.25$
$\exp (1.06) * 0.847=2.445$
which are different from values obtained from the usual pure component standard state

## \#Problem 5:

Consider an equimolar binary mixture of species $a$ and $b$. The activity coefficients at infinite dilution are given by $\gamma 1 \infty(\mathrm{x} 2 \approx 1)=2$ and $\gamma 2 \infty(\mathrm{x} 1 \approx 1)=1.5$, calculate the activity coefficient of species $a$ and $b$ using the two-constant Margules expansion, Van Laar equation, and the Wilson equation

## Soltuion

* Two-constant Margules expansion
$\mathrm{RTln} \gamma_{1}^{\infty}=(\mathrm{A}+3 \mathrm{~B})-4 \mathrm{~B}=\mathrm{A}-\mathrm{B}$
$\mathrm{RT} \ln \gamma_{2}{ }^{\infty}=(\mathrm{A}-3 \mathrm{~B})+4 \mathrm{~B}=\mathrm{A}+\mathrm{B}$
with $\gamma_{1}^{\infty}\left(\mathrm{x}_{2} \approx 1\right)=2$ and $\gamma_{2}^{\infty}\left(\mathrm{x}_{1} \approx 1\right)=1.5$
plug back into above equations, we obtain

$$
\begin{aligned}
& A=R T \ln \sqrt{3} \\
& B=R T \ln \frac{\sqrt{3}}{2}
\end{aligned}
$$

For an equimolar mixture

$$
\begin{aligned}
& \mathrm{RT} \ln \gamma_{1}=(\mathrm{A}+3 \mathrm{~B})(0.5)^{2}-4 \mathrm{~B} *(0.5)^{3} \\
& \mathrm{RT} \ln \gamma_{2}=(\mathrm{A}-3 \mathrm{~B})(0.5)^{2}+4 \mathrm{~B} *(0.5)^{3}
\end{aligned}
$$

Substitute the values of A and B into the above equations, we find $\gamma_{1}=1.11$
$\gamma_{2}=1.19$

* Van Laar equation
$\ln \gamma_{1}^{\infty}=\alpha=\ln (2)$
$\ln \gamma_{2}^{\infty}=\beta=\ln (1.5)$
at equimolar mixture, we have

$$
\begin{gathered}
\ln \gamma_{1}=\frac{\alpha}{\left[1+\frac{\alpha}{\beta}\right]^{2}}=\frac{\ln 2}{\left[1+\frac{\ln 2}{\ln 1.5}\right]^{2}} \\
\gamma_{1}=1.1
\end{gathered}
$$

Similarly we have

$$
\begin{gathered}
\ln \gamma_{2}=\frac{\beta}{\left[1+\frac{\beta}{\alpha}\right]^{2}}=\frac{\ln 1.5}{\left[1+\frac{\ln 1.5}{\ln 2}\right]^{2}} \\
\gamma_{2}=1.18
\end{gathered}
$$

* Wilson equation

$$
\begin{gathered}
\ln \gamma_{1}^{\infty}=-\ln \Lambda_{12}+1-\Lambda_{21}=\ln 2 \\
\ln \gamma_{2}^{\infty}=-\ln \Lambda_{21}-\Lambda_{12}+1=\ln (1.5)
\end{gathered}
$$

Solving these two equations, we obtain

$$
\begin{gathered}
\Lambda_{12}=0.407 \\
\Lambda_{21}=1.21
\end{gathered}
$$

For an equimolar mixture

$$
\ln \gamma_{1}=-\ln \left(0.5+0.5 \Lambda_{12}\right)+0.5\left[\frac{\Lambda_{12}}{0.5+0.5 * \Lambda_{12}}-\frac{\Lambda_{21}}{0.5 * \Lambda_{21}+0.5}\right]
$$

$$
\ln \gamma_{2}=-\ln \left(0.5+0.5 \Lambda_{21}\right)-0.5\left[\frac{\Lambda_{12}}{0.5+0.5 * \Lambda_{12}}-\frac{\Lambda_{21}}{0.5 * \Lambda_{21}+0.5}\right]
$$

Solving the equations to get

$$
\begin{gathered}
\gamma_{1}=1.1 \\
\gamma_{2}=1.17
\end{gathered}
$$

\#Problem 6:
The activity coefficients at infinite dilution of a binary mixture are given as $\gamma 1 \infty(x 2 \approx 1)=1.27$, $\gamma 2 \infty(\mathrm{x} 1 \approx 1)=1.34$; calculate the activity coefficient of species 1 in the mixture, using oneconstant Margules equation, at the following compositions $\mathrm{x} 1=20 \%$; $\mathrm{x} 1=50 \% ; \mathrm{x} 1=90 \%$

## Solution

With the one-constant Margules equation, we have
$\mathrm{RT} \ln \gamma_{1}{ }^{\infty}=\mathrm{A}=\mathrm{RT} \ln (1.27)$
$\mathrm{RT} \ln \gamma_{2}{ }^{\infty}=\mathrm{A}=\mathrm{RT} \ln (1.34)$

The value of A would be taken as the average, which is
$\mathrm{A}=0.5 * \mathrm{RT} *[\ln (1.27)+\ln (1.34)]=0.266 \mathrm{RT}$
At $\mathrm{x}_{1}=20 \% \rightarrow \mathrm{x}_{2}=80 \%$
$\mathrm{RT} \ln \gamma_{1}=(0.8)^{2 *} \mathrm{~A}=0.64 * 0.266 \mathrm{RT}$
$\gamma_{1}=1.186$

At $\mathrm{x}_{1}=50 \% \rightarrow \mathrm{x}_{2}=50 \%$
$\mathrm{RT} \ln \gamma_{1}=(0.5)^{2} * \mathrm{~A}=0.25 * 0.266 \mathrm{RT}$
$\gamma_{1}=1.069$

At $\mathrm{x}_{1}=90 \% \rightarrow \mathrm{x}_{2}=10 \%$
$\mathrm{RT} \ln \gamma_{1}=(0.1)^{2} * \mathrm{~A}=0.01 * 0.266 \mathrm{RT}$
$\gamma_{1}=1.003$

