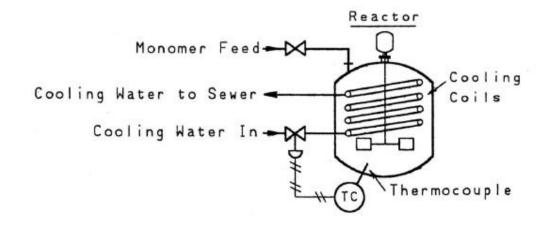
CHEMICAL ENGINEERING DESIGN & SAFETY CHE 4253

Prof. Miguel Bagajewicz

HAZOP Studies

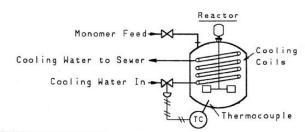
- ☐ Identifies Hazards Systematically (based on malfunctions)
- □ Does not address Risk (probability can be high or very low)
- □ Addresses Consequences (harmless or harmful).
- □ Proposes Actions (Design and/or Operational)


- □ Based on analyzing one equipment at a time.
- □ Describes Consequences of malfunction and proposes
 Action(s) to be taken by identifying Deviations and
 their Causes.
- ☐ Based on using guide words applied to parameters.

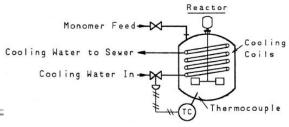
Guide Word
NO OR NOT
MORE
LESS
AS WELL AS
PART OF
REVERSE
OTHER THAN / INSTEAD
EARLY
LATE
BEFORE
AFTER

Parameter			
Flow			
Pressure			
Temperature			
Level			
Time			
Agitation			
Reaction			
Start-up / Shut-down			
Draining / Venting			
Inertising			
Utility failure (instrument air, power)			
DCS failure [b]			
Maintenance			
Vibrations			

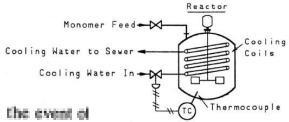
HAZOP EXAMPLE


□ Consider a batch reactor. We will show the HAZOP Analysis for the cooling system only.

EXAMPLE


Guide word	Deviation	Possible causes	Contequences	Action
Cooling Water	nomer Feed to Sewer	L. Control valve fails closed 2. Hugged excling line 3. Cooling water sorvice failure 4. Controller fails and those valve. 5. Air pressure in drive valve fails closely valve Cooling Coils Thermocouple	Temperature increase in reactor Possible thermal runsway	1. Install back-up control valves, or manual bypass valve. 2. Install filters to prevent debris from entering line. 3. Install back-up cooling water source. 4. Install back-up controller. 5. Install control valve that fails open. 6. Install high temperature alarm to alert operator. 7. Install high temperature emergency shutdown. 8. Install cooling water flow meter and low flow alarm.

EXAMPLE


MORE	More cooling flow	Control valve fails to open Controller fails and opens valve	Reactor cools, reactant builds-up, possible runsway on heating	Instruct operate on procedure
LESS	Less cooling flow	Control valve fails to sespond Partially plugged cooling line Partial water source failure	Covered under "NO"	I. Covered under "NO"
AS WELL AS	Cooling water in reactor	Leak in cooling coils, pressure in reactor less than pressure in coils	Dilution of contents Product ruined Overfilling of reactor	Install high level and/or pressure alarm Install proper relief Check maintenance procedure and schedule
AS WELL AS	Reactor product in coils	Leak in coils with reactor pressure greater than coil pressure	Product lost thru coils Loss of product yield Reduction in cooling function Possible contamination of water	Check maintenance procedure and schedules Install upstream check valve is cooling water source

HAZOP EXAMPLE

PART OF	Partial cooling flow	Covered under "LESS COOLING FLOW"		
REVERSE	Reverse cooling flow	Failure of water source resulting in backward flow Backflow due to backpressure	Improper cooling, possible runaway	Install check valve in cooling water line Install high temperature alarm to alert operator
OTHER THAN	Another material besides cooling water	Water source contaminated Backflow from sower	Possible loss of cooling with possible runaway	Isolation of cooling water source Install check valve to prevent reseme flow Install high temperature alarm

HAZOP EXAMPLE

- Installation of a high temperature alarm to alert the operator in the event of cooling function loss.
- Installation of a high temperature shutdown system. This system would automatically shutdown the process in the event of a high reactor temperature.
 The shutdown temperature would be higher than the alarm temperature to provide the operator with the opportunity to restore cooling before the reactor is shutdown.
- Installation of a check valve in the cooling line to prevent reverse flow. A
 check valve could be installed both before and after the reactor to prevent the
 reactor contents from flowing upstream and to prevent the backflow in the
 event of a leak in the coils.
- Periodically inspect the cooling coil to insure its integrity.
- Study of the cooling water source to consider possible contamination and interruption of supply.
- Installation of a cooling water flow meter and low flow alarm. This will
 provide an immediate indication of cooling loss.