SQL in MS Access

2******************** BASIC DATA RETRIEVAL ****************

2Simple Retrieval

6Sorting

7Built-In Functions

8Subqueries

11Grouping

14Querying Multiple Tables

18************** MORE ADVANCED QUERIES ***********

18Using An Alias

18More Involved Joins

20Union, Intersection, and Difference

21All and ANY

23************************ DATA DEFINITION STATEMENTS ********

23Modifying Data in a Database

25Appendix A. Data for the exercises.

25SALESREP

25ORDERS

25ORDERLIN

26PART

27Appendix 2. SQL Reserved Words.

30Appendix 3. Selected SQL Syntax.

SQL Tutorial

******************** BASIC DATA RETRIEVAL ****************
Simple Retrieval

The basic form of an SQL expression is simple. It is merely SELECT_FROM_WHERE. After the SELECT, list those columns that you wish to have displayed. After the FROM, list the table or tables that are involved in the query. Finally, after the WHERE, list any conditions that apply to the data you wish to retrieve.

The tables that match the examples are printed at the end of this tutorial.

Example 1: Retrieve certain columns and all rows.

Statement: List the number, description and amount on hand of all parts.

Since we want all parts listed there is no need for the WHERE clause (we have no restrictions). The query is thus:

SELECT PART_NUMB, PART_DESC, ON_HAND

FROM PART

The query will retrieve:

PART_NUMB PART_DESC ON_HAND

 AX12
 IRON
 104

 AZ52
SKATES
 20

 BA74 BASEBALL 40

 BH22 TOASTER
 95

 BT04
 STOVE
 11

 BZ66 WASHER
 52

 CA14 SKILLET
 2

 CB03
 BIKE
 44

 CX11
 MIXER
 112

 CZ81 WEIGHTS
 208

Example 2: Retrieve all columns and rows.

Statement: List the entire orders table.

You could use the same structure shown in example 1. However, there is a shortcut. Instead of listing all of the column names after the SELECT, you can use the symbol “*”. This indicates that you want all columns listed (in the order in which they have been described to the system during data definition). If you want all columns but in a different order, you would have to type the names of the columns in the order in which you want them to appear. In this case, assuming that the normal order is appropriate, the query would be:

SELECT *

FROM PART

The query will retrieve:

ORDER_NUMB ORDERDATE CUST_NUMB

 12489
 09/02/1987

 124

 12491
 09/02/1987

 311

 12494
 09/04/1987

 315

 12495
 09/04/1987

 256

 12498
 09/05/1987

 522

 12500
 09/05/1987

 124

 12504
 09/05/1987
 522

 Example 3: Use of the WHERE clause.

Statement: What is the first and last name of customer 405?

SELECT CUST_FIRST, CUST_LAST

FROM CUSTOMER

WHERE CUST_NUMB = 405

The query will retrieve:

CUST_FIRST CUST_LAST

 Al
Williams

Example 4: Use of a compound condition within the WHERE clause.

Statement: List the number and description of all parts that are in warehouse 2 and have over 50 units on hand.

Compound conditions are possible within the WHERE clause using AND, OR, and NOT. In this case, you have:

SELECT PART_NUMB, PART_DESC

FROM PART

WHERE WHSE_NUMB = 2

AND ON_HAND > 50
The query will retrieve:

PART_NUMB PART_DESC

 CZ81 WEIGHTS

The condition in the WHERE clause does not have to be equal. Any of the normal comparison operators =, >, >=, <, <= may be used, as well as, ~= (not equal).

Example 5: Use of computed fields.

Statement: Find the available credit for all customers who have at least a $500 credit limit.

There is no column AVAILABLE_CREDIT in our database. It is, however, computable from two columns which are present, CREDIT_LIM and CURR_BAL (AVAILABLE_CREDIT = CREDIT_LIM - CURR_BAL). There are two possible ways around this problem. If the DBMS that we are using supports virtual columns (columns that are not physically stored but rather are computed from existing columns when needed), then AVAILABLE_CREDIT could have been described to the system as a virtual column during the definition of the CUSTOMER table, and we could use it in this query. Assuming that, for whatever reason, this has not been done, we have a second solution to the problem. SQL permits us to specify computations within the SQL expression. In this case, we would have:

SELECT CUST_NUMB, CUST_FIRST, CUST_LAST, CREDIT_LIM -

 CURR_BAL

FROM CUSTOMER

WHERE CREDIT_LIM >= 500

The query will retrieve:

CUST_NUMB CUST_FIRST CUST_LAST 4

 124
 Sally
 Adams 81.25

 256
 Ann
 Samuels 789.25

 405
 Al
 Williams 598.25

 412
 Sally
 Adams 91.25

 522
 Mary
 Nelson 750.50

 587
 Judy
 Roberts 442.25

 622
 Dan
 Martin -75.50

Note that the heading for the available credit column is simply the number 4. Since this column does not exist in the CUSTOMER table, the computer does not know how to label the column and instead uses the number 4 (for the fourth column). There is a facility within SQL to change any of the column headings to whatever you desire. For now, though, just accept the headings that SQL will produce automatically. (There is some variation among different versions of SQL concerning the column headings for computed columns. Your version may very well treat them differently.)

Example 6: Use of “LIKE”.

Statement: List the first and last name and the address, city, and state of all the customers who live in Ada.

Because of the way our CUSTOMER table has been designed, this is a relatively simple query and there would be no use for the LIKE clause. You would simply use the following SQL statement:

SELECT CUST_FIRST, CUST_LAST, CUST_ADDR, CUST_CITY,

 CUST_STATE

WHERE CUST_CITY = ‘Ada’

Let’s say that the CUSTOMER table had been designed differently and the customer address, city, and state were all included under one column titled CUST_ADDR. For example, customer 311’s record would now look like:

CUST_NUMB CUST_FIRST CUST_LAST CUST_ADDR CURR_BAL CREDIT_LIM SLSRP_NUMB

 311
 Don Charles 48 College,Ira, MI 200.10 300 3
Now how would you perform the same query that we performed above? In an instance like this when the city is just a portion of the column labeled CUST_ADDR, and thus anyone living in Ada has “Ada” somewhere within his or her address, you can use the LIKE clause.

SELECT CUST_NUMB, CUST_FIRST, CUST_LAST, CUST_ADDR

FROM CUSTOMER

WHERE CUST_ADDR LIKE ‘%Ada%’

The symbol “%” is used as a wild card. Thus, we are asking for all customers whose address is “LIKE” some collection of characters, followed by Ada, followed by some other characters. Note that this query would also pick up a customer whose address was “576 Adabell, Lansing, MI”. We would probably be safer to have asked for an address like ‘%,Ada,%’ although this would have missed an address entered as “108 Pine, Ada , MI” since this address does not contain the string of characters “,Ada,” but rather “,Ada ,”.

Sorting
Example 7: Use of ORDER BY and IN.

Statement:

A. List all customers ordered by last name.

B. List all customers who have a credit limit of $300 or $1000 ordered by last name.
C. List all customers whose first name begins with “A” ordered by last name.

In a relational database, the order of the rows is considered immaterial. Therefore, if the order in which the data is displayed is important to you, then you should request that the results be displayed in the desired order through your query. In SQL, this is done through an ORDER BY clause.

7A:

SELECT CUST_FIRST, CUST_LAST

FROM CUSTOMER

ORDER BY CUST_LAST

The query will retrieve:

CUST_FIRST CUST_LAST

 Sally
 Adams

 Sally
 Adams

 Joe
 Baker

 Don
 Charles

 Tom Daniels

 Dan
 Martin

 Mary
 Nelson

 Judy
 Roberts

 Ann
 Samuels

 Al
 Williams

7B:

SELECT CUST_FIRST, CUST_LAST

FROM CUSTOMER

WHERE CREDIT_LIM IN (300,1000)

ORDER BY CUST_LAST

7C:

SELECT CUST_FIRST, CUST_LAST

FROM CUSTOMER

WHERE CUST_LAST LIKE ‘A%’

ORDER BY CUST_LAST

You should use name LIKE ‘A%’ instead of ‘%A%’ because name LIKE ‘%A%’ would give you all the customers whose name had the letter A anywhere within the last name.

Example 8: Sorting with multiple keys, descending order.

Statement: List the customer number, first and last name, and credit limit of all customers, ordered by decreasing credit limit and by customer number within credit limit. This is accomplished as follows:

SELECT CUST_NUMB, CUST_FIRST, CUST_LAST, CREDIT_LIM

FROM CUSTOMER

ORDER BY CREDIT_LIM DESC, CUST_NUMB

The query will retrieve:

CUST_NUMB CUST_FIRST CUST_LAST CREDIT_LIM

 412
 Sally
 Adams

1000

 256
 Ann
 Samuels

 800

 405
 Al
 Williams

 800

 522
 Mary
 Nelson
 800

 124
 Sally
 Adams

 500

 587
 Judy
 Roberts

 500

 622
 Dan
 Martin

 500

 311
 Don
 Charles

 300

 315
 Tom
 Daniels

 300

 567
 Joe
 Baker

 300

Built-In Functions

SQL has several built-in functions:

COUNT - count of the number of values in a column

SUM - sum of the values in a column

AVG - average of the values in a column

MAX - largest of the values in a column

MIN - smallest of the values in a column

Example 9: Use of the built-in function COUNT.

Statement: How many different types of parts are in the item class “AP”?

In this query, we are interested in the number of rows that contain the item class called “AP”. The query should be stated as follows:

SELECT COUNT (PART_NUMB)

FROM PART

WHERE ITEM_CLASS = ‘AP’

The query will retrieve:

1

2

Example 10: Use of COUNT and SUM.
Statement: Find the number of customers and the total of their balances.

SELECT COUNT (CUST_NUMB), SUM(CURR_BAL)

FROM CUSTOMER

The query will retrieve:

 1 2

10 2944.8

Subqueries

Example 11: Nesting Queries.
Statement:

A. What is the largest credit limit of any customer of sales representative 6?

B. Which customers have this credit limit?
C. Find the answer to part B in one step.
11A.

SELECT MAX(CREDIT_LIM)

FROM CUSTOMER

WHERE SLSRP_NUMB = 6

The query will retrieve:

 1

800

11B. (After you see the answer from part A)

SELECT CUST_NUMB, CUST_FIRST, CUST_LAST

FROM CUSTOMER

WHERE CREDIT_LIM = 800

The query will retrieve:

CUST_NUMB CUST_FIRST CUST_LAST

 256
 Ann
 Samuels

11C:

In part C, you are going to accomplish the same thing that you accomplished in parts A and B, but in one step. You can accomplish this through a nesting query:

SELECT CUST_NUMB, CUST_FIRST, CUST_LAST

FROM CUSTOMER

WHERE CREDIT_LIMIT IN

(SELECT MAX(CREDIT_LIM)

FROM CUSTOMER

WHERE SLSRP_NUMB = 6)

The query will retrieve the same results as in 11B. The portion of the SQL statement that is contained in the parenthesis is called a subquery. The subquery is evaluated first and then the outer query is evaluated in relation to the subquery.

Example 12: Use of Distinct.

Statement:

A. Find the numbers of all customers who currently have orders.

B. Find the numbers of all customers who currently have orders, making sure to list each customer only once.

C. Count the number of customers who currently have orders.

12A:

The formulation for this query is quite simple if you think about what the question is asking. If a customer currently has an order, then the customer’s number must appear in at least one row of the ORDERS table. Therefore the query should be written as follows:

SELECT CUST_NUMB

FROM ORDERS

The query will retrieve:

CUST_NUMB

 124

 311

 315

 256

 522

 124

 522

13B:

When you look at the answer to part A, you will see that some of the customer numbers appear more than once. If you want to ensure that this duplication does not occur, you can use the DISTINCT clause.

SELECT DISTINCT CUST_NUMB

FROM ORDERS

The query will retrieve:

CUST_NUMB

 124

 256

 311

 315

 522

13C:

Part C involves counting. Although counting has been discussed before, it is important to mention it again when we are discussing the DISTINCT clause. Without the DISTINCT clause, duplicate numbers may be counted twice as the following examples demonstrate:

SELECT COUNT(CUST_NUMB)

FROM ORDERS

The query will retrieve:

1
7

SELECT COUNT(DISTINCT CUST_NUMB)

FROM ORDERS

The query will retrieve:

1
5

The same effect can be achieved by the following query:

SELECT COUNT(CUST_NUMB)

FROM CUSTOMER

WHERE CUST_NUMB IN

(SELECT DISTINCT CUST_NUMB

FROM ORDERS)

Example 13: Use of a built-in function in a subquery.

Statement: List the number and first and last name of all customers whose balance is over the average balance of all customers.

SELECT CUST_NUMB,CUST_FIRST, CUST_LAST, CURR_BAL

FROM CUSTOMER

WHERE CURR_BAL >

(SELECT AVG(CURR_BAL)

FROM CUSTOMER)

The query will retrieve:

CUST_NUMB CUST_FIRST CUST_LAST CURR_BAL

 124
 Sally Adams
 418.75

 315
 Tom
 Daniels
 320.75

 412
 Sally
 Adams
 908.75

 622
 Dan
 Martin
 575.50

Grouping

Example 14: Using GROUP BY and HAVING.

Statement:

A. List the order total for each order.

B. List the order total for those orders that amount to over $700.

14A:

The order total is equal to the sum of number of products ordered multiplied by their respective quoted prices for each order number. The query should be written as follows:

SELECT ORDER_NUMB, SUM(NUM_ORDERD * QUOTEPRICE)

FROM ORDERLIN

GROUP BY ORDER_NUMB

ORDER BY ORDER_NUMB

The query will retrieve:

ORDER_NUMB 2

 12489 164.45

 12491 714.94

 12494 700.00

 12495 115.90

 12498 65.70

 12500 402.99

 12504 217.98

14B:

In part B we are including a restriction. This restriction does not apply to individual rows but rather to groups. Since the WHERE clause applies only to rows, it should not be used in a case such as this. In this particular situation you should use a HAVING clause.

SELECT ORDER_NUMB, SUM(NUM_ORDERD * QUOTEPRICE)

FROM ORDERLIN

GROUP BY ORDER_NUMB

HAVING SUM(NUM_ORDERD * QUOTEPRICE) > 700

ORDER BY ORDER_NUMB

The query will retrieve:

ORDER_NUMB 2

 12491 714.94

Example 15: HAVING vs WHERE.

Statement:

A. List each credit limit together with the number of customers who have this limit.

B. Same as query A, but only list those credit limits held by more than one customer.
C. List each credit limit together with the number of customers of sales representative 3 who have this limit.
D. Sale as query C, but only list those credit limits held by more than one customer.
15A.

In order to count the number of customers who have a particular credit limit, the data must be GROUPed BY this credit limit. The query should be written as follows:

SELECT CREDIT_LIM, COUNT(CUST_NUMB)

FROM CUSTOMER

GROUP BY CREDIT_LIM

The query will retrieve:

CREDIT_LIM 2

 300 3

 500 3

 800 3

 1000 1
15B.

Since this condition involves a group total, a HAVING clause must be used. The query should be written as follows:

SELECT CREDIT_LIM, COUNT(CUST_NUMB)

FROM CUSTOMER

GROUP BY CREDIT_LIM

HAVING COUNT(CUST_NUMB) > 1

The query will retrieve:

CREDIT_LIM 2

 300 3

 500 3

 800 3

15C:

This condition only involves rows rather than groups, so the WHERE clause should be used here. The query should be written as follows:

SELECT CREDIT_LIM, COUNT(CUST_NUMB)

FROM CUSTOMER

WHERE SLSRP_NUMB = 3

GROUP BY CREDIT_LIM

The query will retrieve:

CREDIT_LIM 2

 500 2

 1000 1

15D:

In part D, both a WHERE clause and a HAVING clause are needed since the conditions involve both rows and groups. The query should be written as follows:

SELECT CREDIT_LIM, COUNT(CUST_NUMB)

FROM CUSTOMER

WHERE SLSRP_NUMB = 3

GROUP BY CREDIT_LIM

HAVING COUNT(CUST_NUMB) > 1

The query will retrieve:

CREDIT_LIM 2

 500 2

Querying Multiple Tables

Example 16: Joining two tables together.

Statement: For each part that is on order, find the part number, number ordered, and unit price of the part.

A part is considered to be on order if there is a row in the ORDERLIN table in which the part appears. You can easily find the part number and number of parts ordered in the ORDERLIN table. However, the unit price can only be found in the PART table. In order to satisfy this query, the PART table and the ORDERLIN table must be joined together. In this instance, the process of joining tables involves finding part numbers in the ORDERLIN table that match up to the corresponding part numbers in the PART table. The query should be written as follows:

SELECT ORDER_NUMB, ORDERLIN.PART_NUMB, UNIT_PRICE

FROM ORDERLIN, PART

WHERE ORDERLIN.PART_NUMB = PART.PART_NUMB

The query will retrieve:

ORDER_NUMB PART_NUMB UNIT_PRICE

 12489 AX12

17.95

 12491
 BTO4
 402.99

 12491
 BZ66
 311.95

 12494
 CB03
 187.50

 12495
 CX11

57.95

 12498
 AZ52

24.95

 12498
 BA74

 4.95

 12500
 BT04
 402.99

 12504
 CZ81
 108.99

Here we indicated all fields that we wanted to display in the SELECT clause. In the FROM clause, we list the tables that are involved in the query. In the WHERE clause we give the condition that will restrict the data to be retrieved to only those rows from the two relations that match.

Example 17: Comparison of JOIN and the use of IN.

Statement: Find the description of all parts included in order number 12498.

This query also involves both the PART table and the ORDERLIN table so it is very similar to the query that we just wrote. The query should be written as follows:

SELECT PART_DESC

FROM ORDERLIN, PART

WHERE ORDERLIN. PART_NUMB = PART.PART_NUMB

AND ORDER_NUMB = 12498

The query will retrieve:

PART_DESC

 SKATES

 BASEBALL

It is important to notice that ORDERLIN was listed in the FROM clause even though there were no fields from the ORDERLIN relation that were to be displayed. Because a field from the ORDERLIN relation was listed in the WHERE clause, the ORDERLIN table must be listed in the FROM clause.

Another approach could be taken in this situation involving the IN clause and a subquery. We could first find all of the part numbers in the ORDERLIN relation that appear on any row in which the order number is 12498 as a subquery. Next we find the descriptions of any parts whose part number is in this list. The query would be written as follows:

SELECT PART_DESC

FROM PART

WHERE PART.PART_NUMB IN

(SELECT ORDERLIN.PART_NUMB

FROM ORDERLIN

WHERE ORDER_NUMB = 12498)

Example 18: Comparison of IN and EXISTS.

Statement:

A. Find the number and date of those orders that contain part “BT04”.

B. Find the number and date of those orders that do not contain part “BT04”.

18A:

This query is similar to the previous example and could thus be handled in either of the two ways given by the previous example. Using the formulation involving IN would give:

SELECT ORDERS.ORDER_NUMB, ORDERDATE

FROM ORDERS

WHERE ORDERS.ORDER_NUMB IN

(SELECT ORDERLIN.ORDER_NUMB

FROM ORDERLIN

WHERE PART_NUMB = ‘BT04’)

The query will retrieve:

ORDER_NUMB ORDERDATE

 12491
 90287

 12500
 90587

18B:

This query could be handled in essentially the same way, except that the “IN” would be replaced by “NOT IN”. An alternative formulation can be given using the SQL word “EXISTS”. However, in this case, we would use “NOT EXISTS”. The query should be written as follows:

SELECT ORDER_NUMB, ORDERDATE

FROM ORDERS

WHERE NOT EXISTS

(SELECT *

FROM ORDERLIN

WHERE ORDERS.ORDER_NUMB =

ORDERLIN.ORDER_NUMB

AND PART_NUMB = ‘BT04’)

For each order number in the ORDERS table, the subquery is selecting those rows of the ORDERLIN table on which the order number matches the order number from the ORDERS table and the part number is “BT04”

Example 19: Subquery within a Subquery.

Statement: Find all of the numbers and dates of those orders that include a part located in warehouse 3.

You can approach this problem by determining the list of part numbers in the PART relation for those parts that are located in warehouse 3. Once you have completed that, you can obtain a list of order numbers in the ORDERLIN relation where the corresponding part number is in your previous part number list. Finally, you can retrieve those order numbers and dates in the ORDERS relation for which the order number is in the list of order numbers obtained in your second step. The query would be written as follows:

SELECT ORDER_NUMB, ORDERDATE

FROM ORDERS

WHERE ORDER_NUMB IN

(SELECT ORDER_NUMB

FROM ORDERLIN

WHERE PART_NUMB IN

(SELECT PART_NUMB

FROM PART

WHERE WHSE_NUMB = 3))

The query will retrieve:

ORDER_NUMB ORDERDATE

 12489
 90287

 12491
 90287

 12495
 90487

You could perform this query in an alternative fashion by joining all the tables rather than using subqueries. The query should be written as follows:

SELECT ORDERS.ORDER_NUMB, ORDERDATE

FROM ORDERLIN, ORDERS, PART

WHERE ORDERLIN.ORDER_NUMB = ORDERS.ORDER_NUMB

AND ORDERLIN.PART_NUMB = PART.PART_NUMB

AND WHSE_NUMB = 3

This query would produce the same results as the previous query.

Example 20: A Comprehensive Example.

Statement: List the customer number, the order number, the order date and the order total for all of those orders whose total is over $100. The query should be written as follows:

SELECT CUST_NUMB, ORDERS.ORDER_NUMB, ORDERDATE,

 SUM(NUM_ORDERD * QUOTEPRICE)

FROM ORDERS, ORDERLIN

WHERE ORDERS.ORDER_NUMB = ORDERLIN.ORDER_NUMB

GROUP BY ORDERS.ORDER_NUMB, CUST_NUMB, ORDERDATE

HAVING SUM(NUM_ORDERD * QUOTEPRICE) > 100

ORDER BY ORDERS.ORDER_NUMB

The query will retrieve:

CUST_NUMB ORDER_NUMB ORDERDATE 4

 124
 12489
 90287 164.45

 311
 12491
 90287 714.94

 315
 12494
 90487 700.00

 256
 12495

 90487 115.90

 124
 12500

 90587 402.99

 522
 12504

 90587 217.98

************** MORE ADVANCED QUERIES ***********
Using An Alias

Example 21: Use of an alias.

Statement: List the number and first and last name of all sales representatives together with the number and first and last name of all the customers they represent.

When tables are listed in the FROM clause, you have the option of giving each table an alias or alternate name that you can use throughout the rest of your statement. You do this by immediately following the table with the alias. There should not be any commas separating the table and the alias. Aliases allow you to simplify your statement. An example of a query using an alias follows:

SELECT S.SLSRP_NUMB, S.SLSRP_FRST, S.SLSRP_LAST, C.CUST_NUMB

 C.CUST_FIRST, C.CUST_LAST

FROM SALESREP S, CUSTOMER C

WHERE S.SLSRP_NUMB = C.SLSRP_NUMB

Although aliases can be useful for helping to simplify queries, they can also be essential. The next example demonstrates when an alias is essential.

More Involved Joins

Example 22: Joining a table to itself.
Statement: Find the list of any pairs of customers who have the same first and last name.

If our database contained two different customer tables and the query requested us to find customers in one table who had the same name as customers in the second table, we would perform a simple join operation. However, we only have one customer table in our database. Using the alias feature of SQL, we can treat our CUSTOMER table as though it is two tables in order to fulfill the request. The query should be written as follows:

SELECT FIRST.CUST_NUMB, FIRST.CUST_FIRST, FIRST.CUST_LAST,

 SECOND.CUST_NUMB, SECOND.CUST_FIRST,

 SECOND.CUST_LAST

FROM CUSTOMER FIRST, CUSTOMER SECOND

WHERE FIRST.CUST_FIRST = SECOND.CUST_FIRST

AND FIRST.CUST_LAST = SECOND.CUST_LAST

AND FIRST.CUST_NUMB ~= SECOND.CUST_NUMB

The query would retrieve:

CUST_NUMB CUST_FIRST CUST_LAST CUST_NUMB CUST_FIRST CUST_LAST

 124
 Sally
 Adams

 412

 Sally
 Adams

Example 23: An example involving joining all five tables.

Statement: List the number and first and last name of all sales representatives who represent any customers who currently have any orders on file for parts in item class “HW”. The query should be written as follows:

SELECT SALESREP.SLSRP_NUMB, SALESREP.SLSRP_FRST,

 SALESREP.SLSRP_LAST

FROM SALESREP, CUSTOMER, ORDERS, ORDERLIN, PART

WHERE SALESREP.SLSRP_NUMB = CUSTOMER.SLSRP_NUMB

AND CUSTOMER.CUST_NUMB = ORDERS.CUST_NUMB

AND ORDERS.ORDER_NUM = ORDERLIN.ORDER_NUMB

AND ORDERLIN.PART_NUMB = PART.PART_NUMB

AND ITEM_CLASS = ‘HW’

The query will retrieve:

SLSRP_NUMB SLSRP_FRST SLSRP_LAST

3
 Mary

 Jones

6
 William
 Smith

Union, Intersection, and Difference

SQL supports the set of operations: union, intersection and difference. The union of two relations is a relation containing all the rows that are in either the first relation, the second relation, or both. The intersection of two relations is a relation that contains all of the rows that are in both relations. The difference of two relations is the set of rows that are in the first relation but are not in the second relation. These operations have an obvious restriction. It does not make sense to talk about the union of the CUSTOMER table and the ORDERS table, for example. The two relations must have the same structure, which is termed union-compatible. Union-compatible is defined as two relations that have the same number of attributes (columns) and the corresponding attributes have the same domain (of the same type). The column headings of the two relations do not have to be identical but the columns must come from the same domain.
Example 24: Use of Union.

Statement: List the number and first and last name of all customers who are either represented by sales representative 12 or who currently have orders on file, or both.

SELECT CUST_NUMB, CUST_FIRST, CUST_LAST

FROM CUSTOMER

WHERE SLSRP_NUMB = 12

UNION

SELECT CUSTOMER.CUST_NUMB, CUST_FIRST, CUST_LAST

FROM CUSTOMER, ORDERS

WHERE CUSTOMER.CUST_NUMB = ORDERS.CUST_NUMB

The query will retrieve:

CUST_NUMB CUST_FIRST CUST_LAST

 124

 Sally
 Adams

 256

 Ann
 Samuels

 311

 Don
 Charles

 315

 Tom
 Daniels

 405

 Al
 Williams

 522

 Mary
 Nelson

Example 25: Use of INTERSECT (Intersection).

Statement: List the number and first and last name of all customers who are represented by sales representative 12 and who currently have orders on file.

SELECT CUST_NUMB, CUST_FIRST, CUST_LAST

FROM CUSTOMER

WHERE SLSRP_NUMB = 12

INTERSECT

SELECT CUSTOMER.CUST_NUMB, CUST_FIRST, CUST_LAST

FROM CUSTOMER, ORDERS

WHERE CUSTOMER.CUST_NUMB = ORDERS.CUST_NUMB

The query will retrieve:

CUST_NUMB CUST_FIRST CUST_LAST

 311

 Don
 Charles

 522

 Mary
 Nelson

Example 26: Use of MINUS (Difference).

Statement: List the number and first and last name of all customers who are represented by sales representative 12 but who do not currently have orders on file.

SELECT CUST_NUMB, CUST_FIRST, CUST_LAST

FROM CUSTOMER

WHERE SLSRP_NUMB = 12

MINUS

SELECT CUSTOMER.CUST_NUMB, CUST_FIRST, CUST_LAST

FROM CUSTOMER, ORDERS

WHERE CUSTOMER.CUST_NUMB = ORDERS.CUST_NUMB

The query will retrieve:

CUST_NUMB CUST_FIRST CUST_LAST

 405
 Al
 Williams

All and ANY

Example 27: Use of ALL.
Statement: Find the number, first and last name, current balance, and sales representative number of those customers whose balance is larger than the balances of all customers of sales representative 12.

This query can be satisfied by finding the maximum balance of the customers that are represented by sales representative 12 in a subquery and then finding all customers whose balance is greater than this number. The query can also be satisfied using an ALL statement which is demonstrated below:

SELECT CUST_NUMB, CUST_FIRST, CUST_LAST, CURR_BAL,

 SLSRP_NUMB

FROM CUSTOMER

WHERE CURR_BAL > ALL

(SELECT CURR_BAL

FROM CUSTOMER

WHERE SLSRP_NUMB = 12)

The query will retrieve:

CUST_NUMB CUST_FIRST CUST_LAST CURR_BAL SLSRP_NUMB

 124
 Sally
 Adams
 418.75

 3

 315
 Tom
 Daniels
 320.75

 6

 412
 Sally
 Adams
 908.75

 3

 622
 Dan
 Martin
 575.50

 3

Example 28: Use of ANY.

Statement: Find the number, first and last name, current balance, and sales representative number of those customers whose balance is larger than the balance of any customer of sales representative 12.

This query can be satisfied by finding the minimum balance of the customers that are represented by sales representative 12 in a subquery and then finding all customers whose balance is greater than this number. The query can also be satisfied using an ANY statement which is demonstrated below:

SELECT CUST_NUMB, CUST_FIRST, CUST_LAST, CURR_BAL,

 SLSRP_NUMB

FROM CUSTOMER

WHERE CURR_BAL > ANY

(SELECT CURR_BAL

FROM CUSTOMER

WHERE SLSRP_NUMB = 12)

The query will retrieve:

CUST_NUMB CUST_FIRST CUST_LAST CURR_BAL SLSRP_NUMB

 124
 Sally
 Adams
 418.75

 3

 311
 Don
 Charles
 200.10

 12

 315
 Tom
 Daniels
 320.75

 6

 405
 Al
 Williams
 201.75

 12

 412
 Sally
 Adams
 908.75

 3

 567
 Joe
 Baker
 201.20

 12

 587
 Judy
 Roberts
 57.75
 12

 622
 Dan
 Martin
 575.50

 3

************************ DATA DEFINITION STATEMENTS ********

Modifying Data in a Database

Example 29: Change existing data in the database.

Statement: Change the address of sales representative 12 to “111 Brookhollow”. The command should be written as follows:

UPDATE SALESREP

SET SLSRP_ADDR = ‘111 Brookhollow’

WHERE SLSRP_NUMB = 12

Example 30: Add new data to the database.

Statement: Add customer (444, Cindy, Wilson, 317 Harvard, Grant, MI, 0.00, 300, 6) to the database. The command should be written as follows:

INSERT INTO CUSTOMER

VALUES

(555,‘Cindy’,‘Wilson’,‘317 Harvard’,‘Grant’,‘MI’,0.00,300,6)

Example 31: Delete data from the database.
Statement: Delete customer 124 from the database. The command should be written as follows:

DELETE CUSTOMER

WHERE CUST_NUMB = 124

When deleting records from a database it is important to remember to use the primary key. For example, say we had said to delete the customer named Sally Adams. If we had written our command this way, two records would have been deleted because there are two customers named Sally Adams. We may only have meant to delete one. Since primary keys are unique, there will be no chance of deleting more than one record when you delete using the primary key.

Example 32: Change data in the database based on a compound condition.

Statement: For each customer with a $500 credit limit whose balance does not exceed his/her credit limit, increase the credit limit to $800. The command should be written as follows:

UPDATE CUSTOMER

SET CREDIT_LIM = 800

WHERE CREDIT_LIM = 500

AND CURR_BAL < CREDIT_LIM
Example 33: Create a new relation with data from an existing relation.

Statement: Create a new relation called “CUST” containing the same columns as CUSTOMER but only the rows for which the credit limit is $500 or less.

The first thing that must be done is to describe the new table using the data definition facilities of SQL.

CREATE TABLE CUST

(CUST_NUMB DECIMAL(4).

CUST_FIRST
CHAR(10).

CUST_LAST

CHAR(10).

CUST_ADDR
CHAR(20).

CUST_CITY

CHAR(10).

CUST_STATE
CHAR(2).

CURR_BAL

DECIMAL(7,2).

CREDIT_LIM

DECIMAL(4)

SLSRP_NUMB
DECIMAL(2))

Once we have described the new table, we can use the INSERT command we used earlier. However, we must also use a SELECT command to indicate what is to be inserted into this new table. The command should be written as follows:

INSERT INTO CUST

SELECT *

FROM CUSTOMER

WHERE CREDIT_LIM <= 500

Appendix A. Data for the exercises.

CUSTOMER

	CUST_NUMB
	CUST_FIRST
	CUST_LAST
	CUST_ADDR
	CUST_CITY
	CUST_STATE
	CURR_BAL
	CRED_LIM
	SLSRP_NUMB

	124
	SALLY
	ADAMS
	481 OAK
	LANSING
	MI
	$418.75
	$500.00
	3

	256
	ANN
	SAMUELS
	215 PETE
	GRANT
	MI
	$10.75
	$800.00
	6

	311
	DON
	CHARLES
	48 COLLEGE
	IRA
	MI
	$200.10
	$300.00
	12

	315
	TOM
	DANIELS
	914 CHERRY
	KENT
	MI
	$320.75
	$300.00
	6

	405
	AL
	WILLIAMS
	519 WATSON
	GRANT
	MI
	$201.75
	$800.00
	12

	412
	SALLY
	ADAMS
	16 ELM
	LANSING
	MI
	$908.75
	$1,000.00
	3

	522
	MARY
	NELSON
	108 PINE
	ADA
	MI
	$49.50
	$800.00
	12

	567
	JOE
	BAKER
	808 RIDGE
	HARPER
	MI
	$201.50
	$300.00
	6

	587
	JUDY
	ROBERTS
	512 PINE
	ADA
	MI
	$57.75
	$500.00
	6

	622
	DAN
	MARTIN
	419 CHIP
	GRANT
	MI
	$575.50
	$500.00
	3

	700
	Joe
	Smith
	
	
	
	$0.00
	$0.00
	

SALESREP

	SLSRP_NUMB
	SLSPR_FRST
	SLSRP_LAST
	SLSRP_ADDR
	SLSRP_CITY
	SLSRP_STATE
	TOTAL_COMM
	COMM_RATE

	12
	SAM
	BROWN
	419 HARPER
	LANSING
	MI
	$2,150.00
	5

	3
	MARY
	JONES
	123 MAIN
	GRANT
	MI
	$2,150.00
	5

	6
	WILLIAM
	SMITH
	102 RAYMOND
	ADA
	MI
	$4,912.00
	7

ORDERS

	ORDER_NUMB
	ORDERDATE
	CUST_NUMB

	12489
	9/2/1987
	124

	12491
	9/2/1987
	311

	12494
	9/4/1987
	315

	12495
	9/4/1987
	256

	12498
	9/5/1987
	522

	12500
	9/5/1987
	124

	12504
	9/5/1987
	522

ORDERLIN

	ORDER_NUMB
	PART_NUMB
	NUM_ORDERED
	QUOTEPRICE

	12489
	AX12
	11
	$14.95

	12491
	BT04
	1
	$402.99

	12491
	BZ66
	1
	$311.95

	12494
	CB03
	4
	$175.00

	12495
	CX11
	2
	$57.95

	12498
	AZ52
	2
	$22.95

	12498
	BA74
	4
	$4.95

	12500
	BT04
	1
	$402.99

	12504
	CZ81
	2
	$108.99

PART

	PART_NUMB
	PART_DESC
	ON_HAND
	ITEM_CLASS
	WHSE_NUMB
	UNIT_PRICE

	AX12
	IRON
	104
	HW
	3
	$17.95

	AZ52
	SKATES
	20
	SG
	2
	$24.95

	BA74
	BASEBALL
	40
	SG
	1
	$4.95

	BH22
	TOASTER
	95
	HW
	3
	$34.95

	BT04
	STOVE
	11
	AP
	2
	$402.99

	BZ66
	WASHER
	52
	AP
	3
	$311.95

	CA14
	SKILLET
	2
	HW
	3
	$19.95

	CB03
	BIKE
	44
	SG
	1
	$187.50

	CX11
	MIXER
	112
	HW
	3
	$57.95

	CZ81
	WEIGHTS
	208
	SG
	2
	$108.99

Appendix 2. SQL Reserved Words.

The syntax for SQL statements can be obtained from the MS Access “Help” function by looking for SQL Reserved Words. This will give you a list of the reserved words implemented by Access. Clicking on the word will give you the syntax definitions. This is a printout from Access 2000.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

The following list includes all words reserved by the Microsoft Jet database engine for use in SQL statements. The words in the list that are not in all uppercase letters are also reserved by other applications. Consequently, the individual Help topics for these words provide general descriptions that do not focus on SQL usage.

[image: image1.wmf]
Note Words followed by an asterisk (*) are reserved but currently have no meaning in the context of a Microsoft® Jet SQL statement (for example, Level and TableID). Words that are not underlined do not have linked explanations.

[image: image2.wmf]
A
	ABSOLUTE
	ANY

	ADD
	ARE

	ADMINDB
	AS

	ALL
	ASC

	Alphanumeric — See TEXT
	ASSERTION

	ALTER
	AUTHORIZATION

	ALTER TABLE
	AUTOINCREMENT — See COUNTER

	And
	Avg

	AS
	

B-C
	BEGIN
	COLLATION

	Between
	COLUMN

	BINARY
	COMMIT

	BIT
	COMP, COMPRESSION

	BIT_LENGTH
	CONNECT

	BOOLEAN — See BIT
	CONNECTION

	BOTH
	CONSTRAINT, CONSTRAINTS

	BY
	CONTAINER

	BYTE
	CONTAINS

	CASCADE
	CONVERT

	CATALOG
	Count

	CHAR, CHARACTER — See TEXT
	COUNTER

	CHAR_LENGTH
	CREATE

	CHARACTER_LENGTH
	CURRENCY

	CHECK
	CURRENT_DATE

	CLOSE
	CURRENT_TIME

	CLUSTERED
	CURRENT_TIMESTAMP

	COALESCE
	CURRENT_USER

	COLLATE
	CURSOR

D
	DATABASE
	DISALLOW

	DATE — See DATETIME
	DISCONNECT

	DATETIME
	DISTINCT

	DAY
	DISTINCTROW

	DEC, DECIMAL
	DOMAIN

	DECLARE
	DOUBLE

	DELETE
	DROP

	DESC
	

E-H
	Eqv
	FOREIGN

	EXCLUSIVECONNECT
	FROM

	EXEC, EXECUTE
	FROM Clause

	EXISTS
	GENERAL — See LONGBINARY

	EXTRACT
	GRANT

	FALSE
	GROUP

	FETCH
	GUID

	FIRST
	HAVING

	FLOAT, FLOAT8 — See DOUBLE
	HOUR

	FLOAT4 — See SINGLE
	

I
	IDENTITY
	INPUT

	IEEEDOUBLE — See DOUBLE
	INSENSITIVE

	IEEESINGLE — See SINGLE
	INSERT

	IGNORE
	INSERT INTO

	IMAGE
	INT, INTEGER, INTEGER4 — See LONG

	Imp
	INTEGER1 — See BYTE

	In
	INTEGER2 — See SHORT

	IN
	INTERVAL

	INDEX
	INTO

	INDEXCREATEDB
	Is

	INNER
	ISOLATION

J-M
	JOIN
	LONGTEXT

	KEY
	LOWER

	LANGUAGE
	MATCH

	LAST
	Max

	LEFT
	MEMO — See LONGTEXT

	Level*
	Min

	Like
	MINUTE

	LOGICAL, LOGICAL1 — See BIT
	Mod

	LONG
	MONEY — See CURRENCY

	LONGBINARY
	MONTH

	LONGCHAR
	

N-P
	NATIONAL
	Outer*

	NCHAR
	OUTPUT

	NONCLUSTERED
	OWNERACCESS

	Not
	PAD

	NTEXT
	PARAMETERS

	NULL
	PARTIAL

	NUMBER — See DOUBLE
	PASSWORD

	NUMERIC — See DECIMAL
	PERCENT

	NVARCHAR
	PIVOT

	OCTET_LENGTH
	POSITION

	OLEOBJECT — See LONGBINARY
	PRECISION

	ON
	PREPARE

	OPEN
	PRIMARY

	OPTION
	PRIVILEGES

	Or
	PROC, PROCEDURE

	ORDER
	PUBLIC

Q-S
	REAL — See SINGLE
	SMALLDATETIME

	REFERENCES
	SMALLINT — See SHORT

	RESTRICT
	SMALLMONEY

	REVOKE
	SOME

	RIGHT
	SPACE

	ROLLBACK
	SQL

	SCHEMA
	SQLCODE, SQLERROR, SQLSTATE

	SECOND
	StDev

	SELECT
	StDevP

	SELECTSCHEMA
	STRING — See TEXT

	SELECTSECURITY
	SUBSTRING

	SET
	Sum

	SHORT
	SYSNAME

	SINGLE
	SYSTEM_USER

	SIZE
	

T-Z
	TABLE
	UPDATEOWNER

	TableID*
	UPDATESECURITY

	TEMPORARY
	UPPER

	TEXT
	USAGE

	TIME — See DATETIME
	USER

	TIMESTAMP
	USING

	TIMEZONE_HOUR
	VALUE

	TIMEZONE_MINUTE
	VALUES

	TINYINT
	Var

	TO
	VARBINARY — See BINARY

	TOP
	VARCHAR — See TEXT

	TRAILING
	VarP

	TRANSACTION
	VARYING

	TRANSFORM
	VIEW

	TRANSLATE
	WHEN

	TRANSLATION
	WHENEVER

	TRIM
	WHERE

	TRUE
	WITH

	UNION
	WORK

	UNIQUE
	Xor

	UNIQUEIDENTIFIER
	YEAR

	UNKNOWN
	YESNO — See BIT

	UPDATE
	ZONE

	UPDATEIDENTITY
	

29

