Skip Navigation

OU Researchers Develop Radar Simulator to Characterize Scattering Mechanisms of Debris Particles in Tornadoes

OU Public Affairs WebsiteOU homepagePublic Affairs homepage
Skip Side Navigation

OU Researchers Develop Radar Simulator to Characterize Scattering Mechanisms of Debris Particles in Tornadoes

Radar Truck

 

5-1-17

FOR IMMEDIATE RELEASE

Contact: Jana Smith, Director
Strategic Communications for R&D
University of Oklahoma
405.325.1322; jana.smith@ou.edu
Follow on Twitter @OUResearch

NORMAN – A University of Oklahoma research team with the Advanced Radar Research Center has developed the first numerical polarimetric radar simulator to study and characterize scattering mechanisms of debris particles in tornadoes. Characterizing the debris field of a tornado is vital given flying debris cause most tornado fatalities. Tornado debris characteristics are poorly understood even though the upgrade of the nation’s radar network to dual polarimetric radar offers potentially valuable capabilities for improving tornado warnings and nowcasting.

“These results are important for operational weather forecasters and emergency managers,” says Nick Anderson, program director in the National Science Foundation Division of Atmospheric and Geospace Sciences, which funded the research. “An improved understanding of what weather radars tell us about tornado debris can help provide more accurate tornado warnings, and quickly direct emergency personnel to affected areas.”

“With this simulator, we can explain in great detail to the operational weather community the tornadic echo from the polarimetric radar,” said Robert Palmer, ARRC executive director. “The signal received by the dual polarimetric radar is not easily understood because rain is mixed with the debris. The knowledge we gain from this study will improve tornado detection and near real-time damage estimation.”

Numerous controlled anechoic chamber measurements of tornadic debris were conducted at the Radar Innovations Laboratory on the OU Research Campus to determine the scattering characteristics of several debris types—leaves, shingles and boards. Palmer, D.J. Bodine, B.L.Cheong, C.J. Fulton and S.M. Torres, the center, and the OU Schools of Electrical and Computer Engineering and Meteorology, developed the simulator to provide comparisons for actual polarimetric radar measurements.

Before this study, there were many unanswered questions related to tornado debris scattering, such as knowing how the size, concentration and shape of different debris types affect polarimetric variables.  How the radar identifies the debris is equally as important. Orientation of debris makes a difference as well as how the debris falls through the atmosphere. Overall, understanding debris scattering characteristics aid in the discovery of the relationship between debris characteristics, such as lofting and centrifuging, and tornado dynamics.

OU team members were responsible for various aspects of this study. Coordination of damage surveys and collection of debris samples were led by Bodine. Field experiments were designed by team members in collaboration with Howard Bluestein, OU School of Meteorology. Electromagnetic simulations and anechoic chamber experiments were led by Fulton. The signal processing algorithms were developed by Torres and his team. Cheong led the simulation development team.  

The study, “SimRadar: A Polarimetric Radar Time-Series Simulator for Tornadic Debris Studies,” will be published in the May issue of the Institute of Electrical and Electronics Engineers Transactions on Geoscience and Remote Sensing. This work is supported by the National Science Foundation with grant number AGS-1303685. There were significant results from the collaboration between the center and the Disaster Prevention Research Institute in Kyoto University.

# # #

Note to editors: An animation has been developed for the simulation of the three types of tornadic debris used in this study, which included leaves (green), shingles (pink) and boards (orange). The OU team has the ability, however, to simulate other types of debris. Download the animation at https://www.dropbox.com/s/v1hyck1f9hbuk5g/simradar-20170112.mp4?d1=0.

Recent News

Stephenson Cancer Center Earns National Cancer Institute Designation

Daniel Hayden

NORMAN -National, state and local leaders joined the Stephenson Cancer Center at the University of Oklahoma today to celebrate the center’s designation as a National Cancer Institute (NCI) Cancer Center. With this award, the Stephenson Cancer Center joins an elite group of 70 NCI-Designated Cancer Centers nationwide. Read more

OU Meteorologists Studying Arctic Atmospheric Barriers

Daniel Hayden

NORMAN - A University of Oklahoma meteorology team, led by Steven Cavallo, is studying the role of tropopause polar vortices as a barrier in limiting predictability over the Arctic with three, five-year grants totaling $2.9 million from the U.S. Department of Defense, Office of Naval Research. TPVs occur in the upper troposphere of the Arctic, but the data doesn’t exist from this barren region to improve prediction. The OU team plans to conduct aircraft data-collection experiments during an international field campaign associated with the ‘Year of Polar Prediction.’ Read more

OU Student Receives Udall Scholarship

Daniel Hayden

NORMAN - University of Oklahoma honors student Daniel R. Hayden has been named a 2018 Udall Scholar. The Udall Foundation Scholarship recognizes undergraduate students who demonstrate a commitment to careers related to the environment or to Native American public policy or health care. Hayden is one of 50 nationwide selected for the honor. Read more

OU Professor to Receive IEEE Satellite Communications Technical Contribution Award

Mohammed Atiquzzaman

Mohammed Atiquzzaman, is the recipient of the prestigious Institute of Electrical and Electronics Engineers Satellite Communications Technical Contribution Award for 2018. The annual award is given to an accomplished, senior-level researcher who has achieved outstanding results in satellite communications and recognizes excellent scientific contributions done by academia and industries. Atiquzzaman will receive the award at the IEEE International Conference on Communications in Kansas City, Missouri, May 20-24. Read more

OU Physicist Developing Quantum-Enhanced Sensors for Real-Life Applications

Albert Marino

A University of Oklahoma physicist, Alberto M. Marino, is developing quantum-enhanced sensors that could find their way into applications ranging from biomedical to chemical detection. In a new study, Marino’s team, in collaboration with the U.S. Department of Energy’s Oak Ridge National Laboratory, demonstrates the ability of quantum states of light to enhance the sensitivities of state-of-the-art plasmonic sensors. The team presents the first implementation of a sensor with sensitivities considered state-of-the-art and shows how quantum-enhanced sensing can find its way into real-life applications. Read more

OU Class of 2018 Gift to Honor Borens

The Boren Green

NORMAN – The University of Oklahoma Class of 2018 will celebrate their time at OU through a dedicated green space that will add to OU’s national reputation as one of America’s most beautiful campuses. Located along Lindsey Street in front of the newly completed Residential Colleges, this year’s class gift will fund a picturesque lawn named The Boren Green. Read more

OU Students Receive National Security Education Program Award for International Study

The Boren Awards

NORMAN – University of Oklahoma senior James Ratcliff and OU junior Libby Trowbridge recently were selected as recipients of the prestigious Boren Award for International Study, sponsored by the National Security Education Program. Thirty-four OU students have received the award since the program began in 1994. Read more

News Archives

2017  | 2016  | 2015  | 2014  |  2013  

June 2018

May 2018

April 2018

March 2018


For requests for past releases, please contact OU Public Affairs at (405) 325-1701 or publicaffairs@ou.edu.