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Premises
Computational Science & Engineering (CSE) is an integral 
part of science & engineering research.
Because most problems of CSE interest are large, CSE and 
High Performance Computing (HPC) are inextricably linked.
Most science & engineering students have relatively little 
programming experience.
Relatively few institutions teach either CSE or HPC to most 
of their science & engineering students.
An important reason for this is that science & engineering 
faculty believe that CSE and HPC require more computing 
background than their students can handle.
We disagree.
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The Role of Linux Clusters
Linux clusters are much cheaper than proprietary HPC 
architectures (factor of 5 to 10 per GFLOP).
They’re largely useful for:

MPI
large numbers of single-processor applications

MPI software design is not easy for inexperienced 
programmers:

difficult programming model
lack of user-friendly documentation – emphasis on technical details 
rather than broad overview
hard to find good help

BUT: a few million dollars for MPI programmers is much 
much cheaper than tens or hundreds of millions for big SMPs 
– and the payoff lasts much longer.
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Why is HPC Hard to Learn?
HPC technology changes very quickly:

Pthreads: 1988 (POSIX.1 FIPS 151-1) [1]

PVM:      1991 (version 2, first publicly released) [2]

MPI:        1994 (version 1) [3,4]

OpenMP: 1997 (version 1) [5,6]

Globus:    1998 (version 1.0.0) [7]

Typically a 5 year lag (or more) between the standard and 
documentation readable by experienced computer scientists 
who aren’t in HPC
1. Description of the standard
2. Reference guide, user guide for experienced HPC users
3. Book for general computer science audience
Documentation for novice programmers: very rare
Tiny percentage of physical scientists & engineers ever learn 
these standards
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Why Bother Teaching Novices?
Application scientists & engineers typically know their 
applications very well, much better than a collaborating 
computer scientist would ever be able to.
Because of Linux clusters, CSE is now affordable.
Commercial code development lags behind the research 
community.
Many potential CSE users don’t need full time CSE and HPC 
staff, just some help.
Today’s novices are tomorrow’s top researchers, especially 
because today’s top researchers will eventually retire.
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Questions for Teaching Novices
What are the fundamental issues of CSE?
What are the fundamental issues of HPC?
How can we express these issues in a way that makes sense 
to inexperienced programmers?
Is classroom exposure enough, or is one-on-one contact with 
experts required?



Computational Science 
& Engineering
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CSE Hierarchy
Phenomenon
Physics
Mathematics (continuous)
Numerics (discrete)
Algorithm
Implementation
Port
Solution
Analysis
Verification 
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CSE Fundamental Issues
Physics, mathematics and numerics are addressed well by 
existing science and engineering curricula, though often in 
isolation from one another.
So, instruction should be provided on issues relating 
primarily to the later items – algorithm, implementation, 
port, solution, analysis and verification – and on the 
interrelationships between all of these items.
Example: algorithm choice
Typical mistake: solve a linear system by inverting the 
matrix, without regard for performance, conditioning, or 
exploiting the properties of the matrix.
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The Five Rules for CSE [8]

1. Know the physics.
2. Control the software.
3. Understand the numerics.
4. Achieve expected behavior.
5. Question unexpected behavior.



13

Know the Physics
In general, scientists and engineers know their problems well –

they know how to build the mathematical model representing 
their physical problem.
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Understand the Numerics
This area is less well understood by the scientific and 

engineering community. The tendency is toward old and 
often inherently serial algorithms.

At this stage, a researcher is greatly aided by considering two 
aspects of algorithm development:
Do the numerics accurately capture the physical phenomena?
Is the algorithm appropriate for parallel computing?
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Achieve the Expected Behavior
The testing and validation of any code is essential to develop 

confidence in the results. Verification is accomplished by 
applying the code to problems with known solutions and 
obtaining the expected behavior.
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CSE Implies Multidisciplinary
CSE is the interface between physics, mathematics and 
computer science.
Therefore, finding an effective and efficient way for these 
disciplines to work together is critically important to success.
However, that’s not typically how CSE is taught; rather, it’s 
taught in the context of a particular application discipline, 
with relatively little regard for computing issues, especially 
performance.
But, performance governs the range of problems that can be 
tackled.
Therefore, the traditional approach limits the scope and 
ambition of new practitioners.



High Performance 
Computing
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OSCER
OU Supercomputing Center for Education & Research
OSCER is a new multidisciplinary center within OU’s 
Department of Information Technology
OSCER is for:

Undergrad students
Grad students
Staff
Faculty

OSCER provides:
Supercomputing education
Supercomputing expertise
Supercomputing resources

Hardware
Software
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HPC Fundamental Issues
Storage hierarchy
Parallelism

Instruction-level parallelism
Multiprocessing

Shared Memory Multithreading
Distributed Multiprocessing

High performance compilers
Scientific libraries
Visualization
Grid Computing
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How to Express These Ideas?
Minimal jargon
Clearly define every new term in plain English
Analogies

Laptop analogy
Jigsaw puzzle analogy
Desert islands analogy

Narratives
Interaction: instead of just lecturing, ask questions to lead the 
students to useful approaches
Followup: not just classroom but also one-on-one
This approach works not only for inexperienced 
programmers but also for CS students.
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HPC Workshop Series

Supercomputing
in Plain English

An Introduction to
High Performance Computing

Henry Neeman, Director
OU Supercomputing Center for Education & Research
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HPC Workshop Topics
1. Overview
2. Storage Hierarchy
3. Instruction Level Parallelism
4. Stupid Compiler Tricks (high performance compilers)
5. Shared Memory Multithreading (OpenMP)
6. Distributed Multiprocessing (MPI)
7. Grab Bag: libraries, I/O, visualization

Sample slides from workshops follow.
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What is Supercomputing About?

SpeedSize
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What is the Storage Hierarchy?

Registers
Cache memory
Main memory (RAM)
Hard disk
Removable media (e.g., CDROM)
Internet

Fast, expensive, few

Slow, cheap, a lot

[9]

[10]
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Why Have Cache?

Cache is nearly the same speed
as the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second!

CPU 73.2 GB/sec

51.2 GB/sec

3.2 GB/sec
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Henry’s Laptop

Pentium 4 1.6 GHz w/512 KB L2 Cache
512 MB 400 MHz DDR SDRAM
30 GB Hard Drive
Floppy Drive
DVD/CD-RW Drive
10/100 Mbps Ethernet
56 Kbps Phone Modem

Dell Latitude C840[11]
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Storage Speed, Size, Cost

charged
per month
(typically)

unlimited

12

Ethernet
(100 Mbps)

charged per 
month 

(typically)

unlimited

0.007

Phone 
Modem

(56 Kbps)

CD-RWHard 
Drive

Main
Memory

(400 MHz 
DDR 

SDRAM)

Cache
Memory

(L2)

Registers
(Pentium 4
1.6 GHz)Henry’s 

Laptop

$0.0015 [17]$0.009 [17]$1.17 [17]$1200 [17]

–
Cost

($/MB)

unlimited30,0005120.5304 bytes**
[16]

Size
(MB)

4 [9]100 [15]3,277 [14]52,428 [13]73,232[12]

(3200
MFLOP/s*)

Speed
(MB/sec)

[peak]

*   MFLOP/s: millions of floating point operations per second
** 8 32-bit integer registers, 8 80-bit floating point registers, 8 64-bit MMX integer registers,

8 128-bit floating point XMM registers
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Tiling
SUBROUTINE matrix_matrix_mult_tile (        &
&  dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend,  &
&  qstart, qend)
DO c = cstart, cend

DO r = rstart, rend
if (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)
END DO !! q = qstart, qend

END DO !! r = rstart, rend
END DO !! c = cstart, cend

END SUBROUTINE matrix_matrix_mult_tile

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(         &

&  dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend, qstart, qend)

END DO !! qstart = 1, nq, qtilesize
END DO !! rstart = 1, nr, rtilesize

END DO !! cstart = 1, nc, ctilesize
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Parallelism

Parallelism means doing 
multiple things at the same 
time: you can get more 
work done in the same time.

Less fish …

More fish!
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Instruction Level Parallelism
Superscalar: perform multiple operations at the same time
Pipeline: start performing an operation on one piece of data 
while continuing the same operation on another piece of data
Superpipeline: perform multiple pipelined operations at the 
same time
Vector: load multiple pieces of data into special registers in 
the CPU and perform the same operation on all of them at the 
same time
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Why You Shouldn’t Panic
In general, the compiler and the CPU will do most of the heavy 

lifting for instruction-level parallelism.

BUT:
You need to be aware of ILP, because how your code is 
structured affects how much ILP the compiler and the CPU can 
give you.
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The Jigsaw Puzzle Analogy



33

The Jigsaw Puzzle Analogy (2002)



34

Serial Computing
Suppose you want to do a jigsaw puzzle
that has, say, a thousand pieces.

We can imagine that it’ll take you a
certain amount of time.  Let’s say
that you can put the puzzle together in
an hour.
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Shared Memory Parallelism
If Julie sits across the table from you, 
then she can work on her half of the 
puzzle and you can work on yours.  
Once in a while, you’ll both reach into 
the pile of pieces at the same time 
(you’ll contend for the same resource), 
which will cause a little bit of 
slowdown.  And from time to time 
you’ll have to work together 
(communicate) at the interface between 
her half and yours.  The speedup will 
be nearly 2-to-1:  y’all might take 35 
minutes instead of 30.
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The More the Merrier?
Now let’s put Lloyd and Jerry on the 
other two sides of the table.  Each of 
you can work on a part of the puzzle, 
but there’ll be a lot more contention 
for the shared resource (the pile of 
puzzle pieces) and a lot more 
communication at the interfaces.  So 
y’all will get noticeably less than a   
4-to-1 speedup, but you’ll still have 
an improvement, maybe something 
like 3-to-1:  the four of you can get it 
done in 20 minutes instead of an hour.
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Diminishing Returns
If we now put Cathy and Denese and 
Chenmei and Nilesh on the corners of 
the table, there’s going to be a whole 
lot of contention for the shared 
resource, and a lot of communication 
at the many interfaces.  So the 
speedup y’all get will be much less 
than we’d like; you’ll be lucky to get 
5-to-1.

So we can see that adding more and 
more workers onto a shared resource 
is eventually going to have a 
diminishing return.
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Distributed Parallelism

Now let’s try something a little different.  Let’s set up two 
tables, and let’s put you at one of them and Julie at the other.
Let’s put half of the puzzle pieces on your table and the other 
half of the pieces on Julie’s.  Now y’all can work completely 
independently, without any contention for a shared resource.  
BUT, the cost of communicating is MUCH higher (you have 
to scootch your tables together), and you need the ability to 
split up (decompose) the puzzle pieces reasonably evenly, 
which may be tricky to do for some puzzles.
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More Distributed Processors
It’s a lot easier to add 
more processors in 
distributed parallelism.  
But, you always have to 
be aware of the need to 
decompose the problem 
and to communicate 
between the processors.  
Also, as you add more 
processors, it may be 
harder to load balance
the amount of work that 
each processor gets.
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Load Balancing

Load balancing means giving everyone roughly the same 
amount of work to do.

For example, if the jigsaw puzzle is half grass and half sky, 
then you can do the grass and Julie can do the sky, and then 
y’all only have to communicate at the horizon – and the 
amount of work that each of you does on your own is 
roughly equal.  So you’ll get pretty good speedup.
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Load Balancing

Load balancing can be easy, if the problem splits up into 
chunks of roughly equal size, with one chunk per 
processor.  Or load balancing can be very hard.
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Hybrid Parallelism



The Desert Islands 
Analogy
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An Island Hut
Imagine you’re on an island in a little 

hut.
Inside the hut is a desk.
On the desk is a phone, a pencil, a 

calculator, a piece of paper with 
numbers, and a piece of paper with 
instructions.
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Instructions
The instructions are split into two kinds:

Arithmetic/Logical: e.g.,
Add the 27th number to the 239th number
Compare the 96th number to the 118th number to see 
whether they are equal

Communication: e.g.,
dial 555-0127 and leave a voicemail containing the 
962nd number
call your voicemail box and collect a voicemail from 
555-0063 and put that number in the 715th slot
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Is There Anybody Out There?
If you’re in a hut on an island, you aren’t specifically aware of 

anyone else.
Especially, you don’t know whether anyone else is working on 

the same problem as you are, and you don’t know who’s at 
the other end of the phone line.

All you know is what to do with the voicemails you get, and 
what phone numbers to send voicemails to.
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Someone Might Be Out There
Now suppose that Julie is on another island somewhere, in the 

same kind of hut, with the same kind of equipment.
Suppose that she has the same list of instructions as you, but a

different set of numbers (both data and phone numbers).
Like you, she doesn’t know whether there’s anyone else 

working on her problem.
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Even More People Out There
Now suppose that Lloyd and Jerry are also in huts on islands.
Suppose that each of the four has the exact same list of 

instructions, but different lists of numbers.
And suppose that the phone numbers that people call are each 

others’.  That is, your instructions have you call Julie, Lloyd 
and Jerry, Julie’s has her call Lloyd, Jerry and you, and so on.

Then you might all be working together on the same problem.
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All Data Are Private
Notice that you can’t see Julie’s or Lloyd’s or Jerry’s numbers,

nor can they see yours or each other’s.
Thus, everyone’s numbers are private: there’s no way for 

anyone to share numbers, except by leaving them in 
voicemails.
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Long Distance Calls: 2 Costs
When you make a long distance phone call, you typically have to 

pay two costs:
Connection charge: the fixed cost of connecting your phone to 
someone else’s, even if you’re only connected for a second
Per-minute charge: the cost per minute of talking, once you’re 
connected

If the connection charge is large, then you want to make as few 
calls as possible.
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Like Desert Islands
Distributed parallelism is very much like the Desert Islands 

analogy:
Processors are independent of each other.
All data are private.
Processes communicate by passing messages (like 
voicemails).
The cost of passing a message is split into the latency
(connection time) and the bandwidth (time per byte).



The Importance         
of Followup
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Why Followup?
Classroom exposure isn’t enough, because in the classroom 
you can’t cover all the technical issues, or how to think about 
parallel programming in the context of each of dozens of 
specific applications.
So, experts have to spend time with student researchers (and, 
for that matter, faculty and staff researchers) one-on-one (or 
one-on-few) to work on their specific applications.
But, the amount of time per research group can be small –
maybe an hour a week for 1 to 2 years.
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OSCER Rounds

From left: Civil Engr undergrad from Cornell; CS grad student; OSCER
Director; Civil Engr grad student; Civil Engr prof; Civil Engr undergrad
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Why Do Rounds?
“The devil is in the details” – and we can’t cover all the 
necessary detail in 7 hours of workshops.
HPC novices need expert help, but not all that much – an 
hour or so a week is typically enough, especially once they 
get going.
Novices don’t need to become experts, and in fact they can’t: 
there’s too much new stuff coming out all the time (e.g., Grid 
computing).
But, someone should be an expert, and that person should be 
available to provide useful information.
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HPC Learning Curve
1. Learning Phase: HPC expert learns about the application; 

application research team learns how basic HPC strategies 
relate to their application

2. Development Phase: discuss and implement appropriate 
optimization and parallelization strategies

3. Refinement Phase: initial approaches are improved through 
profiling, benchmarking, testing, etc

Lots of overlap between these phases



Summary and
Future Work
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CSE/HPC Experts
Most application research groups don’t need a full time CSE 
and/or HPC expert, but they do need some help (followup).
So, an institution with one or a few such experts can spread 
their salaries over dozens of research projects, since each 
project will only need a modest amount of their time.
Thus, these experts are cost effective:

For each project, they add a lot of value for minimal cost.
Their participation in each project raises the probability of each grant 
proposal being funded, because the proposals are multidisciplinary, 
have enough CSE and/or HPC expertise to be practicable, and include 
a strong educational component.
The more projects an expert participates in, the broader their range of 
experience, and so the more value they bring to each new project.

In a sense, the experts’ job is to make themselves obsolete, 
but to a specific student or project rather than to their 
institution – “there’s plenty more where that came from.”
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OU CRCD Project
Develop CSE & HPC modules
Teach CSE & HPC modules within nanotechnology course
Assessment

Surveys
Pre & post test
Attitudinal

Programming Project
We develop parallel Monte Carlo code.
We remove the parallel constructs.
Students (re-)parallelize the code, under our supervision and mentoring.

CSE & HPC modules ported to other courses to ensure broad 
applicability
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