1. A water tank drains at a rate of \(r(t) = \frac{2}{t} \) gallons per minute, \(t \) minutes after the plug is pulled.
 a. Sketch a graph of \(r(t) \) over the interval from \(t=0 \) to \(t=6 \). Label the axes.

 b. The units on the width of the region between \(r(t) \) and the \(t \)-axis are

 c. The units on the height of the region between \(r(t) \) and the \(t \)-axis are

 d. The exact area of the region between \(r(t) \) and the \(t \)-axis from \(t=0 \) to \(t=6 \) is

 e. Interpret the area in context.

2. The rate of change in car sales (in hundred cars per month) is modeled by \(C(t) \), where \(t \) is the number of months after December 2001.
 a. What does the area of the region between the graph of \(C \) lying above the \(t \)-axis and the \(t \)-axis represent?

 b. What are the units on
 i. the width of this region?
 ii. the height of this region?
 iii. the area of this region?
Math 2123 - Math Center Worksheet
Section 5.2

1. A small college is looking at data on the sale of tickets to their home football game. The following data show the rate of change in the sale of tickets for a given price.

<table>
<thead>
<tr>
<th>Ticket price (dollars)</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROC of Sales (tickets per dollar)</td>
<td>183</td>
<td>138</td>
<td>103</td>
<td>79</td>
<td>58</td>
<td>45</td>
<td>33</td>
</tr>
</tbody>
</table>

a. Write a complete exponential model for the data.

b. Use 3 right rectangles to estimate the change in sales when the ticket price increases from $10 to $40.

c. Use 5 midpoint rectangles to approximate the area between the graph of the model you generated in part a and the price axis on the interval [15, 30].

d. Write an interpretation of your answer to part c.
2. Suppose that the rate of flow of revenue for a company can be modeled by
\[r(x) = 2.58x^3 - 10.44x^2 - 5.62x - 15.95 \] million dollars per year where \(x \) is the
number of years after 1990.

a. Use the idea of a limit of sums to calculate \(\int_2^4 r(x) \, dx \). Continue doubling \(N \), the
number of rectangles, in the following table until the approximation is accurate to the
nearest tenth.

<table>
<thead>
<tr>
<th>(N)</th>
<th>Midpoint Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

\[\int_2^4 r(x) \, dx \approx \underline{\text{___________}}. \]

b. Write an interpretation of your answer to part a.
1. Evaluate the following indefinite integrals:

 a. \(\int \frac{1}{9t^3} \, dt \)

 b. \(\int e^t \, dy \)

 c. \(\int 5\sqrt{x} \, dx \)

2. The rate of change of the number of Campbell Soup employees from 1990 through 1998 can be described by \(s(t) = -0.689t^2 + 4.665t - 7.107 \) thousand employees per year, \(t \) years after 1990. In 1993, there were 23,800 people employed by Campbell Soup. Recover the model for the number of Campbell Soup employees.