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The design of heat exchangers, especially shell and tube heat exchangers was originally proposed as a trial and error pro-
cedure where guesses of the heat transfer coefficient were made and then verified after the design was finished. This tradi-
tional approach is highly dependent of the experience of a skilled engineer and it usually results in oversizing. Later,
optimization techniques were proposed for the automatic generation of the best design alternative. Among these methods,
there are heuristic and stochastic approaches as well as mathematical programming. In all cases, the models are mixed
integer non-linear and non-convex. In the case of mathematical programming solution procedures, all the solution
approaches were likely to be trapped in a local optimum solution, unless global optimization is used. In addition, it is very
well-known that local solvers need good initial values or sometimes they do not even find a feasible solution. In this arti-
cle, we propose to use a robust mixed integer global optimization procedure to obtain the optimal design. Our model is
linear thanks to the use of standardized and discrete geometric values of the heat exchanger main mechanical components
and a reformulation of integer nonlinear expressions without losing any rigor. © 2016 American Institute of Chemical

Engineers AIChE J, 63: 1907-1922, 2017
Keywords: optimization, design

Introduction

In its classical book,' Kern presents the design of shell and
tube heat exchangers, as a guess-and-verify procedure where
the overall heat transfer coefficient is guessed first and the
design is performed in such a way that the final resulting heat
transfer coefficient is at least larger than the one that has been
guessed. Modern textbooks®™ also presents in essence the
same trial-and-error design procedure: first an initial tentative
heat exchanger is proposed, then the heat exchanger is rated,
and the results are checked to verify if the heat exchanger is
acceptable, considering the excess area and the allowable pres-
sure drop. If the proposed heat exchanger does not satisfy the
task demands, alterations in the design must be conducted and
followed by a new rating and further examination. The proce-
dure must be repeated until an acceptable solution is found.
This traditional approach involves the direct intervention of a
skilled engineer and remained somewhat unaltered for a long
time. Alternatively, algorithms based on heuristic rules, which
could be implemented in a computer code, were also proposed
for the identification of a design solution.®>* However, the heu-
ristic nature of these schemes does not guarantee that the area
or the cost are optimal.
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More recently, heat exchanger design was considered as an
optimization problem with cost being minimized. However,
for a given heat transfer task, an accurate assessment of the
heat exchanger capital cost would require elaborate costing of
parts as well as assembly costs. For this reason, previous
works usually employed some substitutes: heat exchanger area
or a simplified cost function in relation to the area. Therefore,
the objective function used normally is the minimization of
the heat exchanger area or the total annualized cost, including
capital (area based) and operating costs (pumping costs).

The techniques for design optimization of shell and tube
heat exchangers can be organized in three mains classes: heu-
ristic rules based on thermofluidynamic relations, metaheuris-
tic methods, and mathematical programming.

The utilization of heuristic rules involves different techni-
ques for the exploration of the search space, such as, graphical
analysis and systematic screening of the counting table. Mura-
likrishna and Shenoy’ proposed the analysis of the feasible
region of the design problem through a pressure drop graph
using geometrical and operational constraints. The insertion of
objective function curves in the proposed graph allowed the
identification of the best design alternative. Ravagnani et al.®
proposed the application of an heuristic algorithm to a crescent
sequence of shell diameters in the counting table aiming to
identify the smallest heat exchanger according to the pressure
drop constraints. Eryener’ presented several graphs associated
to the baffle spacing aiming to identify the optimal value of
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this design parameter. Costa and Queiroz® applied a systemat-
ic screening of the counting table, based on discrete alterna-
tives, seeking to identify the heat exchanger with the smallest
area for a given thermal task.

Different metaheuristic algorithms were used to solve the
optimal design problem: simulated annealing,” genetic algo-
rithms,'™'? particle swarm,'*'* imperialist competitive algo-
rithm,'® cuckoo-search algorithm,16 firefly algorithm,l7 etc.
However, there is a lack of organized comparative studies that
allow a clear assessment of the best options among the existent
alternatives. In addition, none of these techniques guarantees
global optimality.

The utilization of mathematical programming based on a
more rigorous treatment of optimality conditions was also
investigated. Because of the nature of the problem variables,
involving continuous (e.g., heat transfer coefficients, pressure
drops, etc.) and discrete variables (e.g., tube diameter, number
of the tubes, etc.), and the nonlinearity of the thermal and
hydraulic model equations, all works use a mixed-integer non-
linear optimization (MINLP) formulation. Mizutani et al.'®
formulated the design optimization based on general disjunc-
tive programming, which structure is organized as a MINLP
problem. The objective function encompasses capital and
operating costs, and the heat exchanger model is based on the
Bell-Delaware method.'® Ponce-Ortega et al.*® employed an
MINLP formulation to the design of series of shell and tube
heat exchangers with 1 shell pass and 2 tube passes. The
dimensioning of the heat exchanger components, however, is
not discussed. Ravagnani et al.! organized the MINLP prob-
lem describing the set of heat exchanger design variables asso-
ciated to the mechanical components according to their
corresponding discrete values and the remaining model varia-
bles as continuous ones. A common feature of all mathemati-
cal programming papers in the literature of heat exchanger
design is the nonconvexity of the formulations proposed,
which does not guarantee global optimality when using local
solvers. An exception of all these string of articles in mathe-
matical programming is the early work of Jegede and Polley,*
who propose a simplified model consisting of three equations
involving the heat transfer coefficients of both tube and shell
side and the area, as well as the pressure drops on both sides.
For fixed pressure drops these equations can be solved and
then other parameters can be obtained. Unfortunately, some
parameters as the number of tubes may not be integers. In
addition, if the diameters of tubes and lengths are standardized
and limited to discrete values, the procedure may also render
values that do not match these discrete options. There is no
procedure suggested as of how large are these mismatches and
how they ought to be handled. When pressure drops are to be
optimized in addition to area, the procedure includes pump-
ing/compression costs. Finally, if the pressure drops are to be
subject just to a maximum limit, the procedure ought to be
different.

In this article, we focus on a mathematical programming
optimization procedure, where each solution candidate is
described by a set of standard values of the design variables,
coherent with industrial practice (TEMA, ASME, or ASTM)
and convert all the resulting MINLP model into a linear one.
Starting from typical thermal and hydraulic model equations
(Kern model), proper mathematical transformations are
applied to organize the heat exchanger model in relation to the
proposed set of integer design variables. The resultant optimi-
zation problem is a mixed-integer linear programming
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problem (MILP). A significant additional advantage stems
from our approach: because it is linear the solution is the glob-
al optimum, as opposed to the MINLP formulations recently
presented in the literature. In addition, the procedure is based
on the use of standardized sizes of tube and shell diameters as
well as lengths avoiding any trial and error procedure that
could be devised by procedures like the ones proposed by
Jegede and Polley.22 In addition, our MILP model can be an
excellent tool to use when embedded as part of bigger system
designs, i.e., simultaneous synthesis of heat exchanger net-
works and design of heat exchangers.

The article is organized as follows. We start presenting the
thermal and hydraulic model equations employed in the design
in its original form. We then discuss the reformulation of the
original equations using binary variables, which represent the
discrete nature of the design variables of shell and tube heat
exchangers. We then show how the reformulated model can
be transformed into a linear one, without losing and rigor, i.e.,
without making any approximations. We finally illustrate the
procedure and compare with other solution procedures.

Heat Exchanger Model

The analysis is focused on shell and tube heat exchanger
without phase change. We use an E-shell type and the service
must be executed in a single shell without loss of generality.
The flow regime considered is a turbulent one, as it is common
in industrial equipment. The physical properties are assumed
constant, according to average values. Because we are focus-
ing on the design procedure and not on the model, we chose
the simpler Kern formulation for the shell-side equations' and
the Dittus-Boelter as well as the Darcy-Weisbach for the tube-
side.*?* The proposed approach can also be extended for
more complex thermo-fluid dynamic models, such as the Bell-
Delaware and the Stream Analysis methods.>*'%** We expect
that these changes will help fine tuning the designs obtained.
We also believe that they will not alter substantially the com-
putational performance.

In this section, the problem parameters, which are fixed pri-
or the optimization, are represented with the symbol @

Fluid allocation

The selection of the tube-side and shell-side streams
depends on several factors, e.g., fouling, temperature, pres-
sure, flow rate, etc. Therefore, it will be considered that the
stream allocation is established prior the optimization. Thus,
the values of the physical properties in the tube-side and shell-
side streams are fixed parameters. Extensions to consider this
allocation as a variable will be done in future work.

Shell-side thermal and hydraulic equations
The flow velocity in the shell-side (vs) depends on the flow
area between adjacent baffles (Ar):
ms

vs= & Ar

()
where ms and ps are the shell-side stream flow rate and densi-
ty, respectively.

This flow area corresponds to the area delimited by the shell
diameter (Ds) and baffle spacing (/bc) multiplied by the free
area ratio (FAR):
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Ar= Ds FAR Ilbc 2)

The FAR between baffles is given by:

Far= P —die) _y_die_, 1 3)
Itp Itp p
where /tp is the tube pitch, dte is the outer tube diameter, and
rp is the ratio between the tube pitch and the tube diameter.
The Reynolds number associated to the shell-side velocity
(Res) is given by:

Deq vs ps

Res= —
s

“)
where Degq is the equivalent diameter, and /s is the shell-side
stream viscosity.

The equivalent diameter present in the Reynolds number
depends on the tube layout. For a square and triangular pat-
tern, respectively:

Ip?

4
Deg= . dte (Square pattern) 5)
3.46 Itp?
Deg= 2P e (Triangular pattern) (6)
n dte

The Nusselt number for the shell-side flow (Nus) is a function
of the Reynolds and Prandtl numbers (Res and Prs)":

Nus= 0.36 Res"5prs'” @

where the dimensionless groups Nusselt and Prandtl are
defined by:

hs Deq

Nus= — (®)
ks

prs= PS8 ©)
ks

V&ihere hs is the shell-side convecti@\heat transfer coefficient,
ks is the thermal conductivity, and Cps is the heat capacity.

The head loss in the shell-side flow, dismissing nozzle pres-
sure drop, can be calculated byl:

APs _ sts(Nb—i- 1) (vs2>

—— — 10
ps g Deq 2g {10
where APs is the shell-side stream pressure drop, fs is the
shell-side friction factor and Nb is the number of baffles.

The expression for evaluation of the shell-side friction fac-
tor is:

fs= 1.728 Res 0188 (11)
The number of baffles is directly related to the baffle spacing
and tube length:
L

Nb= —— 1 12
Ibe (12)

Tube-side thermal and hydraulic equations

The flow velocity in the tube-side (v¢) depends on the num-
ber of tubes per pass (Ntp) and the inner tube diameter (dti):
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4 ‘mt
y= — "M (13)
Nip m pt dti®

where mf and pr are the tube-side stream flow rate and density,
respectively.
The equation of the Reynolds number related to the tube-
side flow rate (Ret) is:
dti vt pt
Ret= S22 (14)
ut
where dti is the inner tube diameter, and ,uAt is the tube-side
stream viscosity.
The Prandtl number for the tube-side stream (Prt) is:
— Cpt [
Prt= pA K
kt

s)

where &t and C/'p\t are the tube-side stream thermal conductivi-
ty, and heat capacity, respectively.

The Reynolds and Prandtl numbers allow the evaluation of
the tube-side Nusselt number (Nuf) through the Dittus-Boelter
correlation®*:

Nut= 0.023 Ret*3Pri" (16)

where the parameter # is equal to 0.4 for heating services and
0.3 for cooling services.
The definition of the Nusselt number is:
ht dti

Nut= — (17
kt

where At is the tube-side convective heat transfer coefficient.
The head loss in the tube-side flow, dismissing nozzle pres-
sure drop, and the variation of the physical properties, is given
by**:
APt ft Npt L v K Npt vi?
ptg 2 g di 2g

18

where APt is the tube-side stream pressure drop, and f is the
tube-side friction factor. The first term in the RHS corresponds
to the head loss in the tube bundle and the second corresponds
to the head loss in the front and rear headers. The parameter K
is equal to 0.9 for one tube pass and 1.6 for two or more tube
passes.

The expression for the Darcy friction factor for turbulent
flow can be expressed by?*:

1.056

fi= 0,014+ 2700

19)

Overall heat transfer coefficient

The expression of the overall heat transfer coefficient (U)
is:

1
U= e (20)
d Rf[ d teln (4 1
dn[ehr + dri <+ <+ Rf s + hs
2 k!uhe

where the ktube is the thermal conductivity of the tube wall,
and th and Rfs are the fouling factors of the tube-side and
shell-side streams, respectively.
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Heat transfer rate equation

According to the logarithmic mean temperature difference
(LMTD) method, the heat transfer rate expression is:

O=UAreq ATim F @21

where Q is the heat load, Areq is the required area, ATIm is
LMTD, and F is the LMTD correction factor.
The LMTD is given by:

(i) - (o1
In (Thi —T('y)
(leo*T?i)

The LMTD correction factor is equal to 1, for one tube pass

and is equal to the following expression for an even number of
tube passes:

ATIm=

(22)

where:

. Thi—Tho
R="2T110 24)
Tco—Tci
Tco—Tci

Thi—Tci

o)
[

(25)

The heat transfer area (A) is represented by the sum of the area
of the surface of each tube:

A= Nit © dte L (26)

where Ntt is the total number of tubes.

To guarantee an adequate design margin, the exchanger
area must be higher than the required area according to a
certain “excess area” (Aexc), specified by the design
engineer:

Aexc
> 1+
A > (1 100) x Areq 27)

Therefore, the heat transfer rate equation is reorganized using
actual heat exchanger area:

o N
vas [1449%¢) 2 (28)
100 | ATim F

Bounds on pressure drops, flow velocities, and Reynolds
numbers

During the process design, allowable pressure drops are
imposed according to the pressure profile of the unit. These
parameters are related to a trade-off between capital and oper-
ating costs. The corresponding constraints are:

APs < APsdisp (29)
1910 DOIT 10.1002/aic Published on behalf of the AIChE

APt < APrdisp (30)

Additionally, lower and upper bounds on flow velocities are
also established:

—

Vs > vsmin 31)
vs < vsmax (32)
vt > vimin 33)
vt < vimax (34)

Flow velocity lower bounds seek to avoid fouling susceptible
conditions. Corresponding upper bounds aims to avoid ero-
sional conditions that could damage the heat exchanger during
its operational life.

According to the application range of the convective heat
transfer coefficient correlations, there are bounds on the Reyn-
olds numbers in the shell-side and tube-side:

Res > 2-10° (35)
Ret > 10* (36)

Geometric constraints

The baffle spacing must be limited between 20 and 100% of
the shell diameter™:

Ibc > 0.2 Ds 37)
lbc < 1.0 Ds (38)

The ratio between the tube length and shell diameter must be
between 3 and 15%¢:

L> 3 Ds 39)
L< 15 Ds (40)

Objective function

The optimization problem seeks to minimize the heat trans-
fer area, which has a direct impact in the exchanger cost:

min A (41)

Other objective functions can be constructed. Normally, capi-
tal cost is monotone with area, so minimizing area is somehow
equivalent to minimizing the capital cost. However, cost can
also be expressed in terms of other variables (weight, materials
of different parts, engineering, labor needed, etc.). Such level
of granularity, including other mechanical stress-related and
material-related considerations, as well as better thermal and
hydraulic modeling will certainly improve results. We leave
all these extensions to future work, as our main purpose in this
article is to present the MILP methodology.

Model Reformulation Using Discrete Variables

In the proposed problem formulation, the set of discrete
design variables that characterize each discrete variable (x) are
represented according to their respective standard indexed val-
ues. That is, x is now represented by several discrete options
xd;, of which one and only one will be chosen. Thus, we intro-
duce a set of binary variables y;, and write x as follows:

x=y xd; y; 42)
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Ziy’:l

According to the engineering practice and TEMA stand-
ards,25 27 these design variables are: inner and outer tube diam-
eter (dti and dte), tube length (L), number of baffles (Nb),
number of tube passes (Npt), pitch ratio (rp), shell diameter
(Ds), and tube layout (lay).

Therefore, for our discrete variables, we write:

(43)

dre= Zz:?x pdie,q ydsg (44)
dti= Z:ZZ?X pdri sd Ydsa (45)
Sy va=1 (46)

L= Zsimjxlim YLst 47
oy V=1 48)

Nb= ijzrzx PNb iy YNy (49)
> e Vb =1 (50)
Npt= ZXZT PNDt iy YNDIarpe 1)
Zﬁﬁi"’l YNptap:=1 (52)

P Zzim? PP srpY Psrp (53)
ZZI Y1Psrp=1 (54)

Ds= ZYDvmdxst‘D\ YDspy (55)

Dsmax
D ipeer YDs0e=1 (56)
sla -~
lay="y " """ playyay ylaya 57)
sla}max
D oy Vaviioy=1 (58)

Instead of leaving these discrete representation as additional
equations to the model, we substitute them in the rest of the
equations. After the substitution of the discrete variables by its
binary representation, the mathematical expressions in the
heat exchanger model we get terms of the form p*'¢"? - - -z
that are substituted as follows:

"= [Zpd il [Z,CI/J, ,V%']nz [Zkz?ik yal "

(59)

nl nZ
p .

Because all binary variables assume a value 1 only once in the
corresponding set (see Eq. 43), Eq. 59 it is easy to see that one
can write:

—~nl —~n2

2=y i qd;

nl _n2

—~ nm
P"q coqdi Ypi Yqj--- Yik

(60)
Therefore, the reformulated model is now composed by sever-
al expressions containing multiple summations of products of

binary variables and a few continuous variables. We now
show the reformulated model.

Shell-side thermal and hydraulic equations

The expression of the shell-side flow velocity obtained from
Eq. 1is:

ms
T D5 s PFAR pL. ©h)
5 3t S S Sy = y s yrpspyLat. YNbsi
(PND oy, +1)
_ srpmax sdmax slaymax
This equation is derived through the following expression Deq/_\zsw:l Zxd:l Zday:l (64)
of the flow area originally present in Eq. 2: PDeq gy, a s1ayYTPsipYdsaylaysiay
_ sDsmax srpmax sLmax sNbmax .
Ar= Zst=1 Zsrp=1 ZSL=I ZsNb=l where:
stS spFAR\) pLs (62) —~2 —12
e LyD~?sD.vy”l7srpnyL YNbsnp pﬁe\q sty = aDeqsiayPIP P dre sy _ p?i; ., (65)
(PNbsNb+ 1) PG npdte ’
where: aDeqy,y=4 if slay = 1 (square pattern) (66)
pﬁé\\R - 63) aDeqyi4,=3.46 if slay = 2 (triangle pattern) 67)
Srp —

PPy

The equivalent diameter corresponding to Egs. 5 and 6 is giv-
en by:

sdmax
Zxd =1 Z

srpmax slaymax ——

Resf - (
srp=1

slay=1 pDeq srp,sd ;[ayyrpsrpydsdylayslav

The Reynolds number equation, associated to the shell-side
flow velocity and equivalent diameter, becomes, after refor-
mulation of Eq. 4:

)

Zstmax Zsrpmax Z&Lmax Zsthax
’ sDs=1 srp=1 sL=1 sNb=1
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Substituting the expression above of the Reynolds number
in Eq. 68, the reformulated form of the Nusselt number for the
shell-side flow becomes:

s\ 055 13
Nus= 0.36 E SNussrp,sd,xluy,st,:L.sNbPrs (69)

where SNUSg, sa siay,sDs,si.snb Tepresents the following sum of

binary variables:

_ srpmax sdmax slaymax

SNuSsrpAsd,xlayAsDx‘sL,.\‘Nb - § sip=1 E sd=1 E slay=1
Zstmax ZsLmax Zsthax

sDs=1 sL=1 sNb=1
pDeqsrp,sd,:lay (prsNb + 1)

P Ds sDsP FAR srpp L sL

! ydsdyZayslanysstyLsL be.\‘Nb

0.55

(70)

YIDsrp

The substitution of Eq. 69 in the definition of the Nusselt num-
ber in Eq. 8 yields the following equation related to the shell-
side heat transfer coefficient:

N ~\ 0.55 ——1/3
f50.36 (;"7) SNUS 1 s slay sDs sL.sNb PTS

Srpmax sdmax slaymax .
Z:rpZI stZI Zslay:l pDeqsrp,sd,slayy’psrpydsdylayslay
(71)

The reformulation of Eq. 10 of the head loss in the shell-side
flow yields:

sDsmax sNbmax srpmax sLmax srpmax
APS=D L pems Daaibms Dasmpmt Dasimt D
sDs=1 sNb=1 srp=1 sL=1 sd=1

slaymax —— 72
E slay=1 pAPSvD\ sNb,srp,sL,sd, \lanySSDSbeSNb (72)

: yrpsrpyLsLydsdylayslay

/El 812 /\SOAIBS /} —-0.14
086 M (”7)
ps o

(;ZW)SN}’+1)2,812

hs=

where:

pAPSsD\ sNb,srp,sL,sd, \[a}

Tube-side thermal and hydraulic equations

The reformulation of the flow velocity in the tube-side is
obtained from Eq. 13:

o — ~ sDsmax sdmax sNptmax srpmax
R (o) wrip Wriep Dniiep W
Zﬂa}max pNttst sd, szt sTp, slaypdn (74)
! 1
s P N Dt sNpt

yDSxDs ydxdprtSNpt . yrpsrpyla_YSlay

The Reynolds number expression (Eq. 14) is now as follows:

4 mt sDsmax sdmax sNprmax srpmax
Ret= T 'u[ Z:Ds 1 st 1 ZszFl Zsrp=1
slaymax prtsz,
Zslay 1 o stst ded
pNttst sd sNpt,srp, slaypdn sd
prtANptyrpArpyla)’ﬂ@

(75)

The insertion of Eq. 75 into Eq. 16 yields the reformulated
form of the Nusselt number for tube-side flow:

4 771\[ 08 ——~n
Nut= 0.023 —7 SNutg s siay,sps,sNpiPTt (76)
Tl

where  SNutg,, s siay.sps,snpe TEPresents a sum of binary
variables:
srpmax sdmax slaymax
Z‘\'rpZI Zxdil leayZI
— 0.8
Zstmax sLmax sNbmax < prtvat )
sDs=1 ZSLZI Z\Nh 1
pNn\D\ sd,sNpt.srp, slaypdn

YDsgps ydsd : prtsztyrpm'pylayslay

SNutsrp.,sd,slay,st,sL,sNb =

77

According the definition of the Nusselt number in Eq. 17, the
tube-side heat transfer coefficient equation becomes:

—~n

.\ 038
kt0.023 (4_@1‘) SNMtxrp.sd@/ay,A‘Dx,sztPn

—— 0812 —— = 1812, 7 1.188
stst (pFAR_vrppLsL) (pDeqsl‘p.sd,sla)') ht= mom (78)
(73) S pti ygydsa

The reformulation of Eq. 18 of the head loss in the tube-side
flow yields:

pt SN DDt e YNPlavpe S Ly YLt 4 mt pNpt e

APt= sNpt=1 s]\i[;tmax SNpt £_usL=1 sL S <0.014 +1.056 - ( S sNpt — )
2 Z\d 1 pd[l sd Ydsa T pN”sD:,sd,.\‘Npt,srp,slaypdnsd

sDsmax sdmax sNprmax srpmax slaymax D d Nt i
y od * y D ¢r, ol v .
E sDs=1 E sd=1 E sNpt=1 § sip=1 E slay=1 YUSsps Yasd * YINPUNpt Y Psip VLAY siay

4 mt PP

~  — — 2
T pt i
P pNﬁxDx,sdJNpt,xrp,slaypdn sd

sDsmax sdmax sNptmax srpmax slaymax D d Not I
. E E E E E S . I'Dsipyld )
sDs=1 sd=1 sNpt=1 srp=1 slay=1 YL Ssps Ylsa'YINDLsNptYTPsipYIAY siay

pt (KIP YNptnpin + KMP (l—prtszrl)) Zi%ﬁﬁm“prtsN,,, YNptonpe
+ .

4 T/ﬂ\[ prtszt

2

~  — — 2
T pt ;
P pNttSDs,sd.szt,serlaypdn sd

Zstmax stmax Z&Nptmax Zsr‘pmax Zslaymax D d Not I
. S 7 a
sDs=1 sd=1 sNpt=1 sp=1 slay=1 YUSsps Ysd YINPUsNpt YT Psrp YIAYslay
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Overall heat transfer coefficient

The reformulation of the overall heat transfer coefficient in Eq. 20 yields:

1 1

U sDsmax x—sdmax s sNprmax sxsrpmax sslaymax 7
Zst: 1 sd=1 Zsztz 1 ZJr]}Zl Zslay: 1 phtst,sd.,szt,xrp.slay stSDS ydsdprtSNplyrpsrpylays/ay

sdmax
I _, pdtey ydsa
S pae y ydiln (72#? e i

' Zijm‘}x pdte y ydsg R/ﬁ ijm‘;x pdte ydsd S gy (80)
sdmax iy yda sdmax | iti ydsd 2 Ktube
sd=1 sd sd=1 sd
1
* RfS+ ma d laymax D. L Nb 7
ST X Samax slay ssmax sL.max S max
(Zsr[;:= 1 st= 1 Zslas): 1 Zst= 1 sL=1 ZsNh= 1 phssrp‘sd,slay.,st,sL7sNbyrpsrpyd:dylay:lanyssDSyLSL besNb)
Heat transfer rate equation
The heat transfer area related to Eq. 26 is given by:
sDsmax sdmax sNptmax srpmax slaymax sLmax 7\/‘\
=T ZSDS 1 st 1 Zszt 1 Zsrp 1 Zsla) 1 ZJLZI b ttSDS"“‘]’JNm*S"[’"Y]“y
pdte \dpL sL yDSsDx ydsdprthpty’psrpylayslanysL (81)
The correction factor of the LMTD assumes the following form:
F= yNptypn +FMP (1 _prtszrl) (82)

where FMP is the value of the correction factor of the LMTD for a configuration with a single shell pass and an even number of

tube passes (Eq. 23).
The substitution of these expressions in Eq. 28 yields the reformulated form of the heat transfer rate equation:

1

sDsmax sdmax sNprmax srpmax slaymax 7
(ZSDSZI Zxdzl Zsztzl ESI‘pZI Zvla} phtst sd, sNpt, srp, slay YDssps ydsaYNPLnpiYTDsipylaysiay

sdmax
sdmax pdteq ydsa
D i pdtesd vd,uln <7Z — )

sdmax
Zxd:l pdiisy ydsa

,ZiZ‘“iX pdte,y yds RR S pdie Ydsa
ijm?x pdti, ydg Sjmalx pdti, ydsd 2 ktube

+ Rfs-l- /1\

(Ziﬁﬁ“—“ix S e S I S N PS5 stay s ot b Y PopY sa 1@y stay YD D5 VLot besNb)

Zstmax stmax Zsztmax Zsrpmax Zslaymax
) sDs=1 sd=1 sNpt=1 srp=1 slay=1

<
A
o(1+4)
L — — —
SmeiX PNt g sa snptsp., S]a}pdte sdpLsL YDsgps ydsdprtszrY’pxl‘pyla)’xlanysL) ATlm (prtSprl +FMP (1 _prtsztl))
(33)
Bounds on pressure drops, flow velocities, and Reynolds numbers

These inequality constraints become:
sDsmax sNbmax srpmax sLmax srpmax slaymax
ZJDSZI ZSNhZI ZsrpZI Z.VLZI ZdeI leayZI (84)
pAPSsD.\‘,.\‘Nh,xrp,sL,A‘d,.\‘lanysSD-\‘be.\‘Nb ' y’pxrpyLSLyd.\‘dylayslay < APSdlSp
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~ sDsmax sdmax sNptmax Srpmax slaymax 7~
pL (0 014 +1.056 - (TE ,Ut D eDsml Dsdel Zszle Zx}‘le Zslay PNt p a. sNpt,srp, slavyDSst YdsaYNPUNp YT DsipYlaYsiay

sNptmax
4 m Zszr=l prtszr yNPtszt
—0.42
sdmax —— sNptmax —— sLmax —~
— sNptmax
<4 mt Zszrzl prtszr YNpLanpe
o3 sDsmax sx—sdmax s sNpimax s—srpmax s—slaymax nr., )
n pt Z.va:l sd=1 ZsNIJIZI ZxrpZI Zslay=l pNnsD.\‘,xd,szt,srp.slanysSDS dedprtSpry’pS"PylayShly
1 1 p7 ——— — sNptmax ——
’ sdmax 2) ’ sdmax 4 d +? (KIP pr[sN]ztl+ KMP (l_prthptl)) ZJNpl=l prtSNp, prlpr,
( —1 pdtiy ydsd) > sa=1 Pdtisg ydsa
sNptmax 7
(4 mt ZSN[7[=1 prtSNpt prtszr
> sDsmax x—sdmax x—sNprmax ssrpmax xslaymax 7.2
T pt ZJDSZI sd=1 Zszt:1 Esz‘pZI Z.\‘[ay:l pNttst,sd,szt,srp,slunySst ydsdprtSNplyrpsrpylayslay
1 —
< APtdisp

’ 2
(et i )

(85)
ms
——— (86)
-~ sDsmax srpmax sLmax sNbmax pDsppFAR g, pL
pS Zst=l srp=1 ZsL=l ZsNb:l - : —
(PN}’XM, +1 )yDS(\n«\yrp,u,,yL;‘L YNbgyy>vsmin
ms
————= (87)
~ sDsmax srpmax sLmax sNbmax PDsppFAR ,,pLy,
oS Z.va:l srp=1 ZSLZI ZSN/)ZI - S _
(pthN;, +1 )yDS.\-nylp.\-,-pyL.\-L YNbgyp <vsmax
)Nt i
—~ ~ sDsmax sdmax sNptmax Srpmax slaymax P [st sd., szt SIp, S[ayp sd )
4 mt/ T pt Z.&‘DS:I st=l Z;NpFl Zsrp=l leu}—l stst ded ’ prtszty’psrpylayslay
pr tszt
> ytmin
(88)
N1t il
—~ ~ sDsmax sdmax sNptmax srpmax slaymax P. [st sd., szt sp,slayP Al gq 3
4 mt/ T pt Zst=1 st=l ZszFl Zsrp=l Zsluy—l stst ded ’ prtszty’psrpyla.)’slay
pr tszt
< yimax
(39)
ms srpmax sdmax slaymax ——
E (Z.\‘rpZI ZA‘(]ZI Zslay 1 pDeq"p sd, ‘[“}yrps’pydmylayﬂa} )
sDsmax srpmax sLmax sNbmax pN b SNb + 1) 3
: _ _ _ — ststy’psrpyL:L besNh) > 2-10 (90)
<Zst—l Zsrp—l ZsL—l ZSN}) 1 pDY DvaARs)ppLsL
4 771\1‘ sDsmax sdmax sNptmax srpmax slaymax pN pt sNpt
_— >
b At Z:DSZI Z:dZI Z:NpIZI Zsr'pZI Zslay:1 N /d-\ stSDS ded prrsztyrpypylayslay 10 (91)
H p ttst ,sd,sNpt,srp, slayp nsd
Geometric constraints
These constraints are modified according to the discrete nature of the design variables:
sLmax ~
L L L sDsmax ——
2=t PLo YL > 02 Y " pDs g yDsins (92)
NP NB g, YNbay+ 1
> wp=1 PNb gy, YNbov
sLmax ~
L L L sDsmax ——
2=t Pl YL < 1.0 Y " pDsp, yDs s 93)
sNbmax 711 Nb Nb +1 =1 sDs
> _swb=1 PNy, YNy
sLmax —~ sDsmax ——
> o PLy yLa > 3 T pDs o, yDsops (94)
sLmax —~ sDsmax ——
> T PLy YLa < 15 Y T pDs g yDsyps 95)
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Objective function

The objective function in relation to the binary variables
assumes the following form:
srpmax
ZJ)'{)Z]

. sDsmax sdmax sNptmax
Min © E E E
sDs=1 sd=1 sNpt=1
slaymax sLmax ——
E E P Nit sDs.sd sNpt, I
slay 1 :L 1 PLSIP,stay

: pd[esdpLsL yDSvDr ydvdpr[erty'pr)pylayvlanyvL

(96)

Conversion to a Linear Model

The above reformulation of the heat exchanger model using
binary variables contains several expressions with products of
binaries. Therefore, at this stage, the problem is a nonlinear
one, which could present multiple local optima with different
values of objective function.

Aiming at providing a linear formulation of the optimiza-
tion problem, thus suppressing the nonconvexity drawback, a
rigorous linear alternative for these binary expressions is used,

(101)
(102)

Wij k< Yk

k2> Ypit ygit ...+ yz—(m—1)

Jaeens

where m is the number of binary variables in the product. Con-
sequently, the original nonlinear term related to the product of
binaries is substituted by linear constraints.

Final MILP Problem

After the application of the technique described above, the
problem becomes a MILP. Aiming to decrease the computa-
tional effort, additional constraints are included to reduce the
search space, as described at the end of this section.

The MILP equations of the heat exchanger design problem
are shown below.

Binary variables equality constraints

The following constraints guarantee that in the solution
only one of the integer values will be selected:

according to the procedure shown below. It is important to sdmax _
mention that the proposed procedure does not involve any st=l ydsa=1 (103)
numerical approximation, i.e., the solution of the resultant for- ZsLmax Io—1 (104)
mulation rigorously guarantees the global optimum of the se=1 YL
design problem. sNbmax
. . . . . Nbgyp=1 1
The product of binary variables in an expression like the ZsNb—l YNy (105)
one shown in Eq. 60 can be grouped in a continuous nonnega- sNptmax Nptow =1 106
tive variable w;; 4 as follows: ZJN!” 1 YPLspt (106)
srpmax. _
Wij k= YDj Yqj--- Yk 97 Zsrpzl rpsp=1 (107)
Then (60) can be rewritten as follows ij f“:";" yDsgps=1 (108)
nl ’12 —~nl —~n2 —~ nm "
. d; qd; ....qd, wij.. 98) slaymax -
p UZAP qd; ... .qdy wije  ( S iy =1 (109)
However (97) can be substituted by Heat transfer rate equation
Wijoo k < YD 99) The heat transfer rate equation in the MILP formulation
Wi < Yg; (100) contains all the expressions related to the heat transfer coeffi-
o cients and heat transfer area:
p/dExd

stmax z.varmax Zxrpmax Zslaymax
sd=1 sNpt=1 srp=1 slay=

dmax
D pdte\dln

é Zstmax
sDs=1

y dsd

p “’sd
Pd” sd

Rf Zvdmax pdtesd dsd+ .
A= pdti, 2 ktube
sLmax sNbmax 1
ZsL=l ZsNb:I — thsDx,srp,sL‘,sNbA,sd,slay
phssrp.sd,slay,xDs,sL,sNb

sDsmax sdmax sNptmax slaymax
(TC Z\Ds 1 Z\‘dil Z\‘Nptil leayZI
100 sdmax sNptmax
(s i (= e 3 S S
100+Aexc = spr=
sLmax ——
Z sL=1 pN”st sd sNpt,srp.slay pdlesdpL L WAJDS sd,sNpt,srp,slay,sL
sDsmax sdmax sNptmax srpmax slaymax
(7[ FMP ZYDV 1 Zxd:l Z,er[:l Z.W‘p:] leayZI
100
<7 ATIm
100+Aexc

srpmax
Z srp=1
sDsmax
sDs=1
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slay=1 7>
p ht.\‘Ds,A‘d ,szt,xrp,x[ayp dti sd

n R/f\S‘F Zsrptilax
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wvt sDs.sd sNpt srp,slay

—

stmax Zstmax
srp=1 sd=1 sDs=1

Zslaymax
slay=1

<

sLmax ——
§ sL=1 pNnva sd ,sNpt,srp,slay pdlevdpL sL WAIPYD\ sd,sNpt.srp,slay,sL )

Z srpmax
srp=1

slaymax
Zsla y=

1 —
100+Aexc

sLmax ——— —
§ sL=1 pNttst ,sd,sNpt,srp.slay pdte dpL sL WAlPYDV sd,sNpt,srp,slay,sL )

(110)
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The constraint in Eq. 111 has continuous variables:
WVtst,sd,szr,srp,slay, thsDx,srp,xL,sNb,sd,slayv WA]P‘vDs,sd,szt,srp,-
stay,sL» A0d WA D sq npe srp siays- The relations of these varia-

bles and the corresponding binary variables are:

WVEDs sd sNptsrpslay < YDSsps (111)
WVEDs sd sNptsrpslay < Yllsd (112)
WVEDs sd sNpt,sip.slay < YNDENpe (113)
WVEDs sd sNptsrp.slay <= YI'Psrp (114)
WVEDs sd sNptsrp.slay < Y1aYs1qy (115)
WYEDs sd sNptsipostay = YDSsps + ydsa+ YNptanp (116)
+ ypspt ylaysa, —4
WASDs srp sL.sNb sd slay < YT Dsrp 117)
WHhSsps srp sL.sNb.sd slay <= Yllsa (118)
WASsDs srp sL.sNb.sd.slay < YIAYsiay (119)
WAS D sip siLsNb.sd.slay < YDSspg (120)
WHAS Dy srp sL.sNb.sdslay < YLt (121)
WhSsDs i sL.sNb sd slay < YNbgnp (122)
WhSsDs srp sL.sNb.sd slay = YIPsip+ Ydsa + Ylaysiay (123)
+yDsspst+ yLg+ YNbgyp,—5
WALP s s sNpi,sip.slay.s. < WASDs.sd sNpt,srp.slay,sL (124)
WALP ps s s\pi,sip.siay,st. < YNDPIsnpi1 (125)
WALP s s s\pi,sip.slay,st. = WAsDs,sd sNptsrp,slay,sL (126)
+ yNptsnpn —1
WA DS sd sNptsrp.slay.sL. < YDSsps (127)
WA D, sd sNpt,srp.slay,sl. = Ydsd (128)
WA Ds s sNpt,srp.slayst. < YNDENpe (129)
WA Dy sd sNpt,sip.slaysL. < Y Dsrp (130)
WADs sd sNpt srp.slay,sL. < YIAYsiay (131)
WA DS sd sNpt,srp slay,st. < YLst, (132)
WA Dy sd sNptsip.slaysL = YDSsps+ Ydsat YNPtony (133)

+ Yrpspt ylayslay + yLg—5

Bounds on pressure drops, flow velocities, and Reynolds
numbers

The linear form of the bound on the shell-side pressure drop

is:
sDsmax sNbmax srpmax sLmax srpmax
ZSDY 1 Z:Nb 1 ZY:‘[)Zl ZYLZI stZI
slaymax ——
E stay=1 pAPS:Ds SNb srp sL,sd slay WDPSSDS SNb,srp,sL,sd slay
< APsdlsp
(134)
e constraints relating the WDPSps sNb srp sl sd siqy CONINUOUS
Th t t lat th DP sDs,sNb,srp,sL,sd,slay t
variable and the respective binary variables are:

WDPSps sNbsipsLosdslay < YDSsps (135)
WDPSpg sNb sipsLosd slay < YNDsnp (136)
WDPSps sNb,sip.sLsd slay < YI'Dsrp (137)
WDPSpg Nbsipsiosdslay < YLt (138)
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WDPSSDJ,sNb,xrp.sL,sd,slay < ydsd (139)
WDPSst,be,srp,sLJd,slay < ylayslay (140)
WDPSSDS,sNbA,srp,sL,sd‘slay Z yDS:DS+ besNh+ YIPsrp (141)

+yL.\‘L+ydsd+ ylayslay =5

The tube-side pressure drop constraint is:

sDsmax sdmax sNptmax srpmax slaymax
ZsD\*l Z\d 1 Zsztil ZxrpZI ZslayZI
sLmax
pAPll‘M}‘bl sNpt.sL,sDs,sd srp.slay

sDsmax sdmax
: WVl‘l‘Lﬂ‘bng Yd,szt,srp,slay,sL_'_ g Ds=1 § sd=1
sNptmax srpmax slaymax sLmax
ZYN[?I 1 Z\)pZI Zsluy:l ZA‘LZI
pAP””rbzszt,sL,st,sd,sr‘[) slay WVttWﬂbSDS~5d7~VNPf~,5rP~Sla}\,5L
sDsmax sdmax sNptmax srpmax slaymax
Z\D\ 1 stZI Zszt 1 Z\rpZI leayZI
pAPtCabszt sDs,sd,srp,slay (KIP WV[lPYDY sd sNpt.srp,slay
+KMP WVtst sd ,sNpt,srp,slay — KMP WVﬂPst ,sd,sNpt,srp., sla})
< APtdzsp
(142)

The constraints relating the wvtturbgpg sa snpesrp,siay,s.  and
WVELP pg a snprsrp.siay CONtinuous variables and the respective
binary variables are:

Wv”Mrb:Ds,sd,szt,serlay‘sL < WVtst;d,szt,srp,x]ay (143)

WVHUTDsps s sNpt,sp siay.st. < YNDEsnpt (144)

WVHUrbps sa.sNpt,srp stay.st. < YLsL (145)

WV”Mrbst,sd,szt,srp,5luy,sL < ydsd (146)

WVIHUID s s sNptsrp.stay,sL. = WVEsDs,sd sNpt,srp.slay (147)
+ pr[szt +yLg +ydy—3

WVELP spg sd sNptsrp.slay < WVEDs sd sNptsrp.slay (148)

WthPst sd sNpt,srp,slay > prtsztl (149)

wvrl Pst ,sd,sNpt,srp slay Z WVtst,sd,szl,srp,slay +prtsztl -1

(150)

The linear form of the bounds on the shell-side flow velocity
are:

— ﬁl} sDsmax srpmax sLmax sNbmax
vsmin < — E g E E
- oS sDs=1 srp=1 sL=1 sNb=1
([7 N bsNb + 1)
pDSstpFAR srppLsL

_ > sDsmax srpmax sLmax sNbmax
vsmax - E E E E
- pS sDs=1 srp=1 sL=1 sNb=1
(PNb 1)

S 2 —WVSsDs,srp,sL,sNb
pDS sD,\‘pFAR srppLsL

(151)

WVSsDs,srp,sL,sNb

(152)

The constraints relating the wvsgp gp,5,svp CONtinuous vari-
able and the corresponding binary variables are:

WVSsDs.sp.sLsNb < YDSspg (153)
WVSsDssrpsLsNb << YIDsrp (154)
WVSsDs.srpsLsNb < YLt (155)

WVSsDs srpsLsNb < YNbsnp (156)
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WVSsDs,srp,sL,sNb > st:Ds + YPsrp + yLsL + besNh =3 (157)
The bounds on the tube-side flow velocity are:
— 4 mt sDsmax sdmax sNprmax srpmax
vinin < A p[ Z\D\ 1 Z\d 1 ZsztZl ZA‘TPZI
slaymax
ZylayZI =

pN”st,sd,.\‘Npt,srp,slaypd” sd

pN P thpt

2 WV[‘\‘DA\“sd,szt:srp,xlay
(158)

— 4 mt sDsmax sdmax sNprmax srpmax
yfmax > E E E E
b pf sDs=1 sd=1 sNpt=1 srp=1
leaymax
slay=1 ——

pNttsD:,sd,:Npt,srp ,slaypdtl sd

)z N P rszr

2 WVtst,sd,szt.szp,slay

(159)
The bounds on the Reynolds numbers are:
ms srpmax sdmax slaymax sDsmax sLmax
E Zsrp: 1 Z:d: 1 Zslay: 1 ZSDS: 1 ZSL: 1
Nbmax pDeq srp.sd,slay (Pjv\bxzvh + 1)

ZsNbZI

. thst,sr‘[),sL,sNb,sd,slay

ststpFAR srppLsL
>2:10°
(160)
sDsmax sdmax sNptmax Srpmax
b 'u[ ZYDSZI Zvd 1 ZsztZl Z.rrp:1
slaymax PN pt sNpt
E slay=1 o — 'WVtst,xd,prt,xrp,xlay
1z N ttxDs,.rd ,,YNpt,xrp,xlayp dti sd
> 10*

(161)

Geometric constraints

The constraints related to the maximum and minimum baf-
fle spacing are:
sLmax sNbmax
ZJ‘L 1 ZsNb=1
pL L sDsmax ——
féwebcmwb < 1.0 Z 5 pDs s YDsgps
(p N bsNb + 1)

sLmax sNbmax
Zstl/\ZsNh=l
pL sDsmax ——
TYLwebchszb > 0.2 Z 5 pDs s YDSgps
(PNbyy +1)

(162)

(163)

The constraints relating the webc,, v, continuous variable and
the corresponding binary variables are:

webcsr vy < YLt (164)
webcg vy < yNbgy, (165)
webcg vy > YL+ yNbgyy—1 (166)

The constraints associated to ratio between the tube length and
shell diameter are:

sLmax — sDsmax
Do PLy yLa > 3 Y T pDs p, YDssps  (167)
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sLmax — sDsmax ——
> o PLa Yw < 15 Y " pDs i, Dsips (168)

Objective function
The objective function is:
sDsmax sdmax sNprmax srpmax slaymax
LELDIND DuinD Dind Duling'D
sDs=1 sd=1 szt 1 vrp 1 slay=1
sLmax ——
sL=1 pNttxDs,xd,szt,xrp.x[a) pdtesu’pLxL

. WAsDAxsdJNpt,.\‘rp,slay,.\‘L
(169)

Feasible Set Reduction
Velocity bounds

The analysis of the feasible set allows the introduction of
additional constraints, which can accelerate the solution algo-
rithm. Bounds on flow velocities are imposed by the con-
straints in the Eqgs. 158 and 159, but the analysis of these
conditions indicates that an extra set of constraints can also be
added to the problem formulation:

WVSsDs,srp,sL,sNb =0 for (SDS, srp, SL, SNb)

€ (Svsminout U Svsmaxout) (170)
WVEDs.sd sNptsip.siay =0 for (sDs, srp, sL, sNb)
€ (Svminout U Svtmaxout) 171)

The sets Svsminout, Svsmaxout, Svtminout, and Svtmaxout are
established prior to the optimization, based on the values of
the set of problem parameters, as follows:

Svsminout={(st,srp,sL, SNB) [ PVS s spstsnp < vsmin—s}

(172)
Svsmaxout={(sDs, srp, sL, sNb)/ PVS s spstsnp = VSAX +e}
(173)
Svtminout=
{ (sDs, sd, sNpt, srp, Sla)’)/l;\Wst,sd,szmp,slay < vimin —8}
(174)
Svtmaxout=
{(sDs,sd, sNpt, srp, slay) | pVipg s swprspsiay = VSTAX+é
(175)

where ¢ is a small positive number.

Shell-side pressure upper bound

The same logic can be employed in relation to the upper
bound on the shell-side pressure drop in Eq. 134, thus
yielding:

WDPSsps sNb.srp sL.sd,siay=0 for (sDs, sNb, srp, sL, sd, slay)

€ SDPsmaxout
(176)
SDPsmaxout={(sDs, sNb, srp,sL, sd, slay)/ 177
pAPSst,sNb,serL,sd,slay > APSdiSp+8}
Baffle spacing

The baffle spacing constraints in Eqs. 162 and 163 yield the
following additional constraints:
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YL, +YNbgnp+yDssps < 2 for (sL,sNb, sDs)
€ (SLNbminout U SLNbmaxout)

(178)
oL .
SLNbminout="{ (sL,sNb, sDs)/ —L=L < 0.2PDs,p,—¢
DPNb g, +1
(179)
oL _
SLNbmaxout= < (sL,sNb, st)/li‘YL > 1.0PDsps+e
PND 1

(180)

Tube length/shell diameter

The ratio between the tube length and shell diameter yields
in Egs. 167 and 168 yield the following additional constraints:

yLsL+yDSst <1 for (SL, SDS)

€ (SLDminout U SLDmaxout) (181)
SLDminout={(sL, sDs)/pLy < 3P/D\ssm—s} (182)
SLDmaxout= {(sL, sDs)/pLy > 15PDs,ps +£} (183)

Heat transfer area

The heat transfer area is the objective function and, a priori,
does not have a bound constraint. However, based on maxi-
mum velocity limits, it is possible to determine maximum val-
ues for the convective heat transfer coefficients and, therefore,
to evaluate a maximum value for the overall heat transfer coef-
ficients. Finally, based on this parameter, it is possible to
establish a minimum value for the heat transfer. The expres-
sion of the additional constraint is:

WASDJ,sd,szr,srp,slayﬁsL:O for (SDSa Sd7 SNPE STp, SIay7 SL)
€ SAminout

(184)

where the set of heat exchangers with area lower than the min-
imum possible is given by:
SAminout={(sDs, sd, sNpt, srp, slay,sL)/n

= L (185)
pNttxDs,xd,prt,xrp.x[aypdte xu,’pL sL < Amin— 8}

The lower bound on the heat transfer area can be determined
through the following set of equations:

0

Amin= —————
Umax ATIlm

(186)

Umax=
1

— —~ — p?i;“,lln (dﬁ) —~
L _drmin+ Rft -drmin+ ———=—Z2 + Rfs + ——

hirmax 2 ktube hsmax
(187)

himax =max (Pt . prpsias ) (188)

hsmax =max ( ;}E‘xrp,xd.’slay.xDs,sLAsNh) (189)
drmin=min (pﬂﬁsd p/did) (190)
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Table 1. Design Data

Hot stream Cold stream
Fluid Crude oil Cooling water
Stream allocation Shell side Tube side
Mass flow rate (kg/s) 110 228.8
Inlet temperature (°C) 90 30
Outlet temperature (°C) 50 40
Fouling factor (m*K/W) 0.0002 0.0004
Allowable pressure drop (kPa) 100 100
Flow velocity bounds (m/s) [1.0 3.0] [0.5 2.0]

Results

The application of the proposed MILP approach is illustrat-
ed by its utilization in the solution of a typical design task
described in Table 1. The physical properties of the streams
are shown in Table 2. The standard values of the design varia-
bles are displayed in Table 3, related to a fixed tubesheet type
exchanger with E-shell, single segmental baffles, tube thick-
ness of 1.65 mm (BWG 16) and thermal conductivity of the
tube wall equal to 50 W/m K. The minimum excess area is
11% and the tube count data is based on Kakag et al.?®

The design task was solved using the MILP formulation
implemented in the optimization software GAMS using the
solver CPLEX. The objective function, and the design and
thermo-fluid dynamic variables in the solution obtained are
shown in Tables 4 and 5.

The analysis of the results indicates that the optimal solu-
tion is coherent with general optimization trends employed in
heat exchanger design. The pressure drops in the shell and
tube sides are close to the allowable values, i.e., the optimal
solution promotes a good exploration of the available pressure
drop aiming to increase the overall heat transfer coefficient
and, consequently, to diminish the heat transfer area.

Performance analysis

Aiming to provide a clearer assessment of the performance
of the proposed approach when compared to conventional
nonlinear alternatives (MINLP), a set of 10 different design
tasks were tested (the problem discussed above is the first
example of the sample). These tasks involve streams typically
found in heat exchanger design problems: methanol, ethanol,
acetone, sucrose solution, crude oil, cooling water, and hot
water.”®? The standard values of the design variables are
equal to the data displayed in Table 3 and the properties and
flows of the fluids for each example are shown in the
Appendix.

The problem sample was solved using the MILP formula-
tion and compared to the original nonlinear model (Egs. 1-41,
44-58) using an MINLP approach with two different solvers:
DICOPT and SBB. The DICOPT algorithm is the outer
approximation with equality relaxation and augmented penalty
algorithm (OA/ER/AP) and the SBB is a branch-and-bound
algorithm (BB). The MINLP formulation employed for the
performance analysis is composed of the constraints in Egs. 1—
40, objective function in Eq. 41, and the description of the

Table 2. Physical Properties of the Streams

Hot stream Cold stream
Density (kg/m?) 786.4 995
Heat capacity (J/(kg-K)) 2177 4187
Viscosity (Pa-s) 1.89-1073 0.72:1073
Thermal conductivity (W/(m-K)) 0.122 0.59
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Table 3. Standard Values of the Discrete Design Variables

Variable Values
Outer tube diameter pdre; (m) 0.019, 0.025, 0.032,
0.038, 0.051

Tube length, pL,, (m) 1.220,1.829,2.439, 3.049,

3.659, 4.877, 6.098

Number of baffles, pNb,y, 1,2,...,20
Number of tube passes, pNpt gy, 1,2,4,6
1.25, 1.33, 1.50

Tube pitch ratio, prp,,,
Shell diameter, pDs ), (m) 0.787, 0.838, 0.889, 0.940,0.
991, 1.067, 1.143,
1.219, 1.372, 1.524

Tube layout, pAlayS,ay 1 = Square, 2 = triangular

Table 4. Heat Exchanger Design Results

MILP
Area (m?) 624
Outer tube diameter (m) 0.019
Tube length (m) 4.9
Number of baffles 7
Number of tube passes 4
Tube pitch ratio 1.25
Shell diameter (m) 1.219
Tube layout Triangular
Total number of tubes 2139
Baffle spacing (m) 0.610
Tube pitch (m) 0.024

Table 5. Thermo-Fluid Dynamic Results
MILP

Shell-side flow velocity (m/s) 0.94

Tube-side flow velocity (m/s) 2.2
Shell-side heat transfer coefficient (W/m>K) 1163
Tube-side heat transfer coefficient (W/mzK) 9206
Overall heat transfer coefficient (W/m2K) 584
Shell-side pressure drop (kPa) 84.9
Tube-side pressure drop (kPa) 91.9

discrete variables in Eqgs. 44-58. An initialization procedure
was provided for initial estimates of the thermal variables
based on the flow velocity bounds in the MINLP algorithms.
No initial estimates were employed in the MILP runs.

The description of all design tasks and the corresponding
solutions can be found in the Supporting Information online
provided with this article. The heat transfer area of the solu-
tions and the computational time employed are displayed in
Table 6. The computational times were measured using a

computer with a processor Intel Core 17 3.40 GHz with 12.0
GB RAM memory.

The results displayed in Table 6 indicate a considerable
number of occasions where the MINLP algorithms failed to
converge. This problem has occurred in 40% of the problems
when using the solvers DICOPT and SBB. The analysis of the
converged results also indicates that the MINLP algorithms
may be trapped in local optima. This problem has occurred in
33% of the converged runs of the DICOPT solver and 17% of
the solutions when using the SBB solver. The comparison of
the solution time (evaluated using the elapsed time command
in GAMS) indicates that the MILP approach is usually much
slower than the MINLP algorithms. However, the observed
solution times of the MILP approach do not compromise its
use in practical applications, varying between about 3 to 45
min.

Effect of pressure drop

As mentioned above the objective function can be formulat-
ed differently. One of the issues is the pressure drop as it is
associated to pumping costs. In this case one could construct
an objective function that is a linear combination of the amor-
tized cost of area, and the pressure drops. Because the coeffi-
cients of such cost function depend a lot on the context, that
is, whether the exchanger is alone needing (or not) pumping
for a source pressure to a delivery pressure, or is part of a net-
work, we believe that it is best to study the effect of the pres-
sure drop on the final design. To do this we prepared three
runs related to the design task described in Table 1, one limit-
ing the pressure drop on tubes to an 80% smaller value. We do
the same for the shell and finally, for completeness we add
both. The results of these runs, together with the original
design are shown in Table 7.

The analysis of the results indicates that the reduction of the
allowable pressure drop determined a reduction in the flow
velocity, which causes a decrease of the corresponding heat
transfer coefficient. Consequently, the smaller value of the
overall heat transfer coefficient implies an increase of the area
necessary to fulfill the design task. Because the heat transfer
coefficient in the shell-side is lower than in the tube-side, the
area increase is more pronounced when the allowable shell-
side pressure drop is reduced. The allowable tube-side pres-
sure drop reduction determines an area increase of 10% and
the equivalent shell-side pressure drop reduction determines
an increase of 40%, equivalent to the increase when both
parameters are reduced.

Table 6. Performance Comparison

Heat transfer area (m?)

Solution time (s)

Example MILP MINLP DICOPT MINLP SBB MILP MINLP DICOPT MINLP SBB
1 624 NC NC 1772 NC NC
2 319 319 319 1606 8.8 1.3
3 199 NC NC 211 NC NC
4 872 872 872 153 87 0.4
5 144 NC NC 931 NC NC
6 332 355 341 2824 5061 1.8
7 207 225 207 2529 1.5 0.9
8 914 914 914 171 19 0.7
9 287 287 287 2058 9.3 0.9
10 327 NC NC 2329 NC NC

Note: NC, non-convergence.

AIChE Journal June 2017 Vol. 63, No. 6

Published on behalf of the AIChE

DOI 10.1002/aic 1919



Table 7. Effect of the Allowable Pressure Drop in the Optimal Design

MILP without

Lower pressure

Lower pressure

Lower pressure drop

changes drop on tubes drop on shell on tubes and shell

Area (m?) 624 684 855 855
Tube length (m) 4.9 4.9 6.1 6.1
Number of baffles 7 8 5 5
Number of tube passes 4 2 4 2
Shell diameter (m) 1.219 1.372 1.372 1.372
Tube layout Triangular Square Square Square
Total number of tubes 2139 2344 2344 2344
Baffle spacing (m) 0.610 0.542 1.016 1.016
Shell-side flow velocity (m/s) 0.94 0.94 0.50 0.50
Tube-side flow velocity (m/s) 2.2 1.0 2.0 1.0
Shell-side heat transfer coefficient (W/mzK) 1163 1009 714 714
Tube-side heat transfer coefficient (W/m>K) 9206 4914 8556 4914
Overall heat transfer coefficient (W/m’K) 584 511 442 422
Shell-side pressure drop (kPa) 84.9 73.7 15.7 15.7
Tube-side pressure drop (kPa) 91.9 10.9 93.8 133

Conclusions

An MILP model for the design of shell and tube heat
exchangers was presented. The model is linear, thanks to the
fact that several geometric design variables are discrete and
therefore amenable to be expressed in terms of binary varia-
bles. When these expressions are substituted in the model, the
resulting equations are nonlinear expressions containing bina-
ry variables. We therefore reformulate the problem as a linear
one without losing any rigor.

The comparison of the MILP model with an MINLP formu-
lation through the solution of the same sample of heat exchang-
er design problems shows drawbacks in the MINLP approach
in relation to non-convergence and local optima. Due to its line-
ar nature, the MILP model proposed here is immune to these
obstacles, always reaching the global optimum.

The computational time for the MILP model is remarkable
higher than the required by others, but it is still satisfactory for
its use in practice. Further research will be devoted to identify
algorithmic options to reduce the computational effort. An
important aspect that must also be noted is that the linear
nature of the proposed model makes it amenable to be easier
to add to other broader models (i.e., HEN synthesis with
simultaneous heat exchanger design).

Notation
Sets

sd = tube diameter, 1...sdmax

sDs = shell diameter, 1... sDsmax
sL = tube length, 1... sLmax

slay = tube layout, 1... slaymax

sNb = number of baffles, 1...sNbmax

sNpt = number of tube passes, 1... sNptmax
srp = tube pitch ratio, 1.. .srpmax

Parameters

A?x\c = excess area, %
¢p = heat capacity, J/kg K
FMP = correction factor of the LMTD for a configuration
with a single shell pass and an even number of
tube passes
gravity acceleration, m/s?
thermal conductivity, W/m K
mass flow rate, kg/s
0.4 for heating services; 0.3 for cooling services
for calculating the correction factor F
pﬁe\%m oty = equivalent diameter, m

o)) ) o)

pDs = shell diameter, m

pdte,, = outer tube diameter, m
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@Sd = inlet tube diameter, m
R [;E.\'L = tube length, m
playgay = tube layout
@.Wh = number of baffles
PNpt g, = number of tube passes

pfvﬁwm dsNptpsiay = total number of tubes
PP, = tube pitch ratio
Py = Prandtl number
Q = heat duty, W
R = for calculating the correction factor F
RZ: fouling factor, m? K/W
T = temperature, °C
p = density, kg/m®
___Ji= viscosity, Pa-s

APdisp = pressure drop available, Pa
ATIm = log-mean temperature difference

Binary variables

ydsq = variable representing the tube diameter
yDssps = variable representing the shell diameter
yLg, = variable representing the tube length
ylaygqy = variable representing the tube layout
yNbgy, = variable representing the number of baffles
YNptgny = variable representing the number of tube passes
YIpgp = variable representing the tube pitch ratio

Continuous variables

A = area, m>

Ar = flow area in the shell side, m?>
d = tube diameter, m

Deq = equivalent diameter, m

Ds = shell diameter, m
f= friction factor
F = correction factor to logarithmic mean temper-

ature difference

h = convective heat transfer coefficient, W/m2 K

Published on behalf of the AIChE

K = for calculating the pressure drop
L = tube length, m
lay = tube layout
Ibc = baffle spacing, m
Itp = tube pitch, m
Nb = number of baffles
Npt = number of tube passes
Ntp = number of tubes per passes
Ntt = total number of tubes
Nu = Nusselt number
Re = Reynolds number
rp = tube pitch ratio
U = overall heat transfer coefficient, W/m? K
v = velocity, m/s
AP = pressure drop, Pa

WA.\'DA,.&'d,prr,srp,slay..\'L =
WA1PxDsJd.,szI.slnsIa)st =
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variable representing the area

variable representing the area and one pass in

the tube
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WDPSsps sNb.srp.sLsd slay =

WV[turbst‘xd.sN])t,sr‘[nslay‘sL =

variable representing the pressure drop in the
shell

variable representing the baffle spacing
variable representing the heat transfer coeffi-
cient in the shell side

variable representing the shell side velocity
variable representing the tube side velocity
variable representing the tube side velocity
and one pass in the tube

variable representing the tube side velocity
and turbulent flow

WEbC.\'L..\'Nb =
thst.srp,xL,beyrd,slay =

WVSsDs srp,sL.sNb =
WVt.\'DA\".vd.prt,.rrp,.\'/ay =
WV[IPxDx.sd,szI,srp,sIay =

Subscripts
¢ = cold fluid
h = hot fluid
i = inlet
o = outlet
s = shell-side
t = tube-side
tube = heat exchanger tube variable
max = maximum value
min = minimum value
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APPENDIX A

Table Al. Heat Exchanger Examples
Example 1 2 3 4 5
Service Crude oil cooler Crude oil cooler Methanol cooler Methanol cooler Methanol heater
Hot stream Crude oil Crude oil Methanol Methanol Hot water
Cold stream Cooling water Cooling water Cooling water Cooling water Methanol
Tube-side stream Cold Cold Hot Hot Hot
Example 6 7 8 9 10
Service Ethanol cooler  Sucrose solution heater Sucrose solution cooler Acetone ethanol exchanger Acetone ethanol exchanger
Hot stream Ethanol Hot water Sucrose solution Ethanol Ethanol
Cold stream Cooling water Sucrose solution Cooling water Acetone Acetone
Tube-side stream Cold Hot Cold Cold Hot
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Table A2. Hot Stream Data

Example 1 2 3 4 5 6 7 8 9 10
m (kgfs) 110.0 50.0 27.8 69.4 40.0 55.6 40.0 83.3 111.1 111.1
Inlet T (°C) 90.0 100.0 70.0 100.0 220.0 150.0 220.0 90.0 190.0 190.0
Outlet T (°C) 50.0 50.0 40.0 40.0 110.2 60.0 80.8 40.0 120.0 120.0
max AP (kPa) 100 60 70 70 70 70 70 100 100 100
p (kg/m?) 786 786 750 750 888 789 888 1080 789 789
7l (mPa:s) 1.89 1.89 0.34 0.34 0.15 0.67 0.15 1.30 0.67 0.67
cp J/kgK) 2177 2177 2840 2840 4312 2470 4312 3601 2470 2470
k (W/m-K) 0.12 0.12 0.19 0.19 0.70 0.17 0.70 0.58 0.17 0.17
Rf (m*K/W) 0.0002 0.0002 0.0002 0.0002 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002

Table A3. Cold Stream Data

Example 1 2 3 4 5 6 7 8 9 10
m (kgfs) 228.8 130.0 56.6 3533 133.3 295.0 133.3 358.3 166.7 166.7
Inlet T (°C) 30.0 30.0 30.0 32.0 30.0 30.0 30.0 30.0 30.0 30.0
Outlet T (°C) 40.0 40.0 40.0 40.0 80.0 40.0 80.0 40.0 79.7 79.7
max AP (kPa) 100 50 100 70 70 70 70 100 100 100
p (kg/m?) 995 995 995 995 750 995 1080 995 736 736
7l (mPas) 0.72 0.72 0.72 0.72 0.34 0.72 1.30 0.80 0.21 0.21
p (J/kgK) 4187 4187 4187 4187 2840 4187 3601 4187 2320 2320
k (W/m-K) 0.59 0.59 0.59 0.59 0.19 0.59 0.58 0.59 0.14 0.14
Rf (m’K/W) 0.0004 0.0003 0.0002 0.0004 0.0001 0.0004 0.0001 0.0004 0.0002 0.0002
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