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ABSTRACT

In a recent article (Gongalves et al., 2016), we presented an MILP formulation for the
detailed design of heat exchangers. The formulation relies on the use of standardized values
for several mechanical parts expressed in terms of discrete choices applied to one simple
model (Kern, 1950). Because we consider that this model could be used as part of more
complex models (i.e. HEN synthesis), in this article we explore several different modeling
options to speed-up computational time. These options are based on different alternatives
of aggregation of the discrete values in relation to the set of binary variables. Numerical

results show that these procedures allow large computational effort reductions.



1. INTRODUCTION

Heat exchangers are equipment responsible for the modification of the temperature
and/or physical state of process streams. They are a considerable fraction of the hardware
of process industries, where a large process plant (e.g. a refinery) may involve the design of
several hundreds of heat exchangers (Buzek and Podkanski, 1996).

The traditional approach for the design of heat exchangers involves the direct
intervention of a skilled engineer in a trial-and-error procedure. Most often, the main target
is the identification of a feasible heat exchanger candidate able to fulfill the desired thermal
service. Since, for a given thermal task, there are different feasible alternatives, the quality
of the design is highly dependent on the experience of the engineer. This aspect becomes
even more important in a scenario of generational transition, where engineering teams were
reduced and thermal specialists became rare in chemical and oil companies (Butterworth,
2004). Modern textbooks present algorithms for the solution of the design problem, where
some level of optimization is included, but these schemes keep the same trial-and-error logic
(Cao, 2009).

Aiming at circumventing the limitations of the traditional design approach, several
papers formulate the design problem as an optimization problem (Caputo et al., 2015). The
objective function is usually the minimization of the heat exchanger area restricted by
allowable pressure drops or the minimization of the total annualized cost, including capital
and operating costs in a yearly basis (Jegede and Polley, 1992). The main constraints are
the thermal and hydraulic equations of the heat exchanger model.

In general, the computational techniques employed for the solution of the design
problem can be classified into three categories: heuristic, metaheuristic and mathematical
programming. The heuristic methods explore the search space based on thermo-fluid

dynamic relations with the support of graphics (Muralikrishna and Shenoy, 2000) or



screening tools (Ravagnani et al., 2003). Metaheuristic methods consists of randomized
algorithms for the search of the optimal solution, such as, simulated annealing (Chaudhuri
and Diwekar, 1999), genetic algorithms (Ponce-Ortega et al., 2009), particle swarm
optimization (Sadeghzadeh et al., 2015), among others. Our article is inserted into the third
category: mathematical programing. Mathematical programming techniques involve the
utilization of deterministic algorithms, where the solution can be found based on formal
optimality conditions (local or global). Newer mathematical programming solutions for the
design of heat exchangers consider the discrete nature of the design variables, thus yielding
mixed-integer nonlinear programming (MINLP) problems (Mizutani et al., 2003; Ponce-
Ortega et al., 2006; Ravagnani and Caballero, 2007). An important aspect of MINLP
alternatives is their nonconvexity, which may present nonconvergence problems and
multiple local optima.

Recently, we proposed a mixed-integer linear programming (MILP) formulation for
the design problem (Gongalves et al., 2016), aiming the minimization of the heat transfer
area. The model is based on the utilization of standard values for several mechanical parts
expressed in terms of discrete choices together with one simple hydraulic and thermal model
(Kern, 1950). For example, tube diameters come only in certain discrete values of diameter
and their wall thickness dictated by a BWG scale. The same goes for shell diameters, tube
length, etc.

The model presented by Gongalves et al. (2016) makes use of several binary
variables, representing the discrete options of the geometric parameters. When using these
discrete representations together with the nonlinear equations corresponding to the
calculation of heat transfer coefficients (shell, tube and overall), and the pressure drop on
both tube and shell sides, the resulting model is a MINLP. We attempted to solve this

MINLP model and obtained local minima in several cases. However, when the discrete



variables are substituted and several algebraic conversions are made, the resulting model is
rigorously linear. Work is underway to apply this methodology to other more modern
hydraulic and thermal models (e.g. Bell-Delaware and stream analysis).

Despite the MILP superiority in relation to the reduction of the objective function
and convergence when compared to the MINLP version, computational times employed are
high. Because we aim at this model to be used as part of more complex models (i.e. HEN
synthesis), and there is a need to improve computational efficiency, the focus of this paper
is to present alternative MILP formulations aiming to reduce the computational effort.

For each standard value of a design variable, Gongalves et al (2016) used a
corresponding set of binary variables in their MILP model. The same direct relation between
design and binary variables was also employed in Mizutani et al. (2003). There are,
however, some alternatives in the literature. Ravagnani and Caballero (2007) used heat
exchanger counting tables to describe some of the discrete values, where each combination
of geometric parameters, corresponding to a counting table row, is associated to a single
binary variable.

This paper investigates different aggregation options of the discrete values and the
corresponding binary variables, to improve the computational performance of the MILP
solution algorithm.

The article is organized as follows: For completion, we first present the non-linear
MINLP model as presented by Gongalves et al. (2016), which it is used as starting point to
the MILP formulation development. We then discuss the alternative discrete representations
and use one option to present the resulting linear model, which is similar, but not equal to
the model presented in the previous article. We then discuss the computational performance

results obtained using different options.



2. HEAT EXCHANGER MODEL

2.1. Scope. Our optimization problem corresponds to the design of shell and tube
heat exchangers with a single E-type shell with single segmental baffles, applied for services
without phase change in turbulent flow. There are seven design variables: number of tube
passes (Ntp), tube diameter (outer and inner: dfe and dti), tube layout (/ay), tube pitch ratio
(rp), number of baffles (Nb), shell diameter (Ds) and tube length (L). The fluid allocation is
assumed previously established by the designer and is not included in the optimization.

The next subsections present the nonlinear model of the heat exchanger design
problem that is employed as starting point for the development of all linear formulations
compared in this paper. Here, the fixed parameters established prior the optimization are

represented with the symbol “*”.

2.2. Shell-Side Thermal and Hydraulic Equations. The convective heat
transfer coefficient is evaluated using the Kern model (Kern, 1950), relating Nusselt (Nus),

Reynolds (Res), and Prandtl numbers (Prs):

Nus = 0.36 Res®>>Prs'/3 (1)
Nus = hskgeq (2)
Res = qul;Sp\s (3)
prs = &L )

where /s is the shell-side convective heat transfer coefficient, vs is the flow velocity, and
Degq is the equivalent diameter. The thermophysical properties are specific mass, ps, heat
capacity, Cps, dynamic viscosity, i5, and thermal conductivity, ks.

The evaluation of the equivalent diameter depends on the tube layout:

— dte (Square pattern) 4)
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Deq = %— dte (Triangular pattern) (6)

where /tp is the tube pitch.

The expression of the shell-side flow velocity is:

= (7

ps Ar

Vs =
where ms is the mass flow rate. The flow area in the shell-side flow is given by:

Ar = Ds FAR lbc (®)

where /bc is the baffle spacing. The expression of the free-area ratio, FAR, is:

FAR = M=1_i 9
ltp ™D

The head loss in the shell-side flow is also based on the Kern model (Kern, 1950):

APs _ fs Ds(Nb+ 1) (ﬁ) (10)

= 25

ps g Deq
where APs is the shell-side pressure drop, and fs is the shell-side friction factor.

The shell-side friction factor is given by:

fs = 1.728 Res0-188 (11)

The relation between the number of baffles and the baffle spacing is:
Nb= ——1 12
"~ lbc (12)
2.3. Tube-Side Thermal and Hydraulic Equations. The convective heat
transfer coefficient is evaluated using the Dittus-Boelter correlation (Incropera and DeWitt,

2006), relating Nusselt (Nut), Reynolds (Ref) and Prandtl numbers (Prt) of the tube-side

flow:
Nut = 0.023 Ret®8pPrt™ (13)
ht dti
Nut = — (14)
Ret = 2ivipt (15)

ut



= (16)
where At is the convective heat transfer coefficient, vt is the flow velocity, pt is the specific
mass, Cpt is the heat capacity, fit is the dynamic viscosity, kt is the thermal conductivity,
and the parameter n is equal to 0.4 for heating and 0.3 for cooling.

The expression of the flow velocity in the tube-side is:
4mt

vt= —= (17)

Ntp 7 pt dti?
where mt is the mass flow rate and density, and Ntp is the number of tubes per pass.

The pressure drop in the tube-side flow is given by (Saunders, 1988):

APt t Npt L vt? K Npt vt?
— = ! — — (18)
pt g 2 gadti 243

where f# is the tube-side friction factor. The parameter K, associated to the pressure drop in
the heads, is equal to 0.9 for one tube pass and 1.6 for two or more tube passes.

The Darcy friction factor for turbulent flow is given by (Saunders, 1988):

ft= 0014 + =2 (19)

Ret0-42
2.4. Heat Transfer Rate Equation and Overall Heat Transfer Coefficient.

Based on the LMTD method, and considering a design margin (“excess area”, Aexc),

the heat transfer area must obey the following relation:

UA > (1+5) 2 (20)

100 / ATIm F

where U is the overall heat transfer coefficient, A is the heat transfer area, Q is the heat load,
ATm is logarithmic mean temperature difference (LMTD), and F is the LMTD correction
factor (Incropera and DeWitt, 2006).

The area of the heat exchanger (4) depends on the total number of tubes (Nt?):

A= Ntt wdtelL (21)



The expression for the evaluation of the overall heat transfer coefficient (U) is:

1
U= — ate (22)
dte | Rftdte  dteln(gm) Rff\s+i
dtiht' dti = 2 ktube hs

where ktube is the thermal conductivity of the tube wall, and Rft and Rf's are the tube-
side and shell-side fouling factors.
The LMTD correction factor is equal to 1, for one tube pass and is equal to the

following expression for an even number of tube passes:

(R%+1)°5 1n((f:f %))

= 2
R <z—ﬁ(§+1— (R2+ 1)0'5)> ( 3)
(R-1)1n —— — o
2—P(R+1+(R2+ 1) )
where:
R =Tu-Tho (24)
Tco-Tct
~  Tco-Tcu
P= Thi—-Tct (25)

2.5. Bounds on Pressure Drops, Flow Velocities and Reynolds Numbers.

The lower and upper bounds on pressure drops, velocities and Reynolds numbers are

represented by:
APs < APsdisp (26)
APt < APtdisp (27)
vs = vsmin (28)
vs < vsmax (29)
vt = vtmin (30)
vt < vtmax (31)
Res = 2-103 (32)

Ret > 10* (33)



2.6. Geometric Constraints. Design recommendations and TEMA standards

impose the following set of constraints (Taborek, 2008a):

lbc = 0.2 Ds (34)
lbc < 1.0 Ds (35)
L= 3Ds (36)
L < 15Ds (37)

2.7. Objective Function. The objective function of the optimization is the

minimization of the heat transfer area:

min A (38)

2.8. Discrete Variables As anticipated above, several variables can only adopt
discrete values according to engineering practice (Taborek, 2008a,b,c) and TEMA standards
(TEMA, 2007). They are: inner and outer tube diameter (dti and dte), tube length (L),
number of baffles (Nb), number of tube passes (Npt), pitch ratio (rp), shell diameter (Ds),
and tube layout (lay). Thus, we substitute the following expressions in the above presented

model.

X = Zi’ai Vi (39)

iyi=1 (40)

where x represents a generic discrete variable, xd; the value of option | for this variable

and y; a binary variable that is used to make the model choose one and only one option.



2.9. MILP Model. After the substitution of the discrete variables is made, the
model results in a complex mixed integer nonlinear programming (MINLP) model that
contains products of binaries and continuous variables. In our previous contribution
(Gongalves et al., 2016), we converted this rigorous MINLP model into a rigorous linear
(MILP) model, making no simplifying assumptions. Thus, a rigorous solution of the MILP
is also a rigorous solution of the MILP. Moreover, because of linearity, the MILP model
renders a global solution. As we shown in our previous paper, solving the MINLP model

using local solvers many times rendered a local solution that is not global.

2.10. MILP Model Performance. Once several options of binary variable
prioritization in the MILP branch and bound, we came up with one option that rendered
solutions in the range from 171 to 2824 seconds, with an average of 1458 seconds for 10
test problems. While this performance time is more than acceptable for a stand-alone run,
even if the number of geometric options is increased. However, this computational time is
still high when for example, repeated runs are needed to handle uncertainty, and when the
model becomes a sub-model of others, like the simultaneous design of a heat exchanger
network with detailed heat exchanger design. We now explore different rigorous
alternatives of binary variable aggregation, all having different computational efficiency

still rendering the same result.

3. ALTERNATIVES OF BINARY VARIABLES ORGANIZATION

We present five different aggregation of binary variables leading to MILP

formulations, that render the same result each with its own computational efficiency.



3.1. Alternative 1. In this alternative, each set of binary variables corresponds to
a discrete variable referred to as seen in the work of Gongalves et al. (2016). Therefore, ydsa
corresponds to variable representing the tube diameter, yDs;ps corresponds to shell diameter,
vLg, corresponds to tube length, ylayga, corresponds to tube layout, yNbsyp, corresponds to
number of baffles, yNptn,: corresponds to number of tube passes, and yrp;, corresponds to

tube pitch ratio.

3.2. Alternative 2. A counting table structure can be employed to organize the
discrete values of the shell diameter, tube diameter, tube layout, number of tube passes, and
tube pitch ratio, where only one set of binary variables, yrows..w, is employed to represent
these discrete values. In this context, srow is a multi-index set, i.e. srow = (sd, sDs, slay,
sNpt, srp). The tube length and the number of baffles remain represented by the original sets

of binary variables yLs. and yNbsnp.

3.3. Alternative 3. This alternative represents the discrete values in two tables.
The first one corresponds to the counting table, as shown in the previous alternative, where
the corresponding set of binaries is yrowlgow1 with srowl = (sd, sDs, slay, sNpt, srp). The
second table contains all pairs of discrete values of tube length and number of baffles. The

set of binaries which represent these discrete values is yrow2gow2 With srow2 = (sNb sL).

3.4. Alternative 4. Another possible combination was the use of two set of binary
variables: yrowlgw1 with srowl = (sd, sDs, slay, sNpt, srp, sL), representing all variables

but the number of baffles, which is represented by the original binary yNbsnp.



3.5. Alternative 5. The last alternative investigated in this work is the use of a

unique set of binary variables, yrowsrow, which corresponds to all discrete variables, srow =

(sd, sDs, slay, sNpt, srp, sL, sNb).

Table 1 contains an overview of the different combinations between binary variables

and the original discrete variables.

Table 1. Alternatives investigated of binary variables

alternative binary variable {original discrete variable}

ydsq {dt}, yDssps {Ds}, ylaygqy {lay}, yNptoy,: {Npt}

1 V" Psrp (D), YL, (L}, YNboy (Nb}

2 YroWsrow {dt, Ds, lay, Npt, rp}, yLg {L}, YNbgy, {ND}
3 YroWgrowt 1dt, Ds, lay, Npt, rp}, yrowg,ows {L, Nb}
4 YroWgow {dt, Ds, lay, Npt,rp, L}, yNbsnp{Nb}

5 Yrowg.ow {dt, Ds, lay, Npt,rp, L, Nb}

4. DEVELOPMENT OF THE MILP FORMULATIONS

The new MILP formulations are built starting from the MINLP model (egs. 1-38)
through three main steps: the organization of the data table of the discrete variables, the
model reformulation, and the conversion to a linear model. We outlined above the
linearization procedure of Alternative 1, referring the reader to our previous article
(Gongalves et al., 2016). For reasons of space and because the procedure is very similar

when aggregates of binary variables is made, we only illustrate Alternative 5 in detail (this



alternative is associated to the highest reduction of the computational time consumed by the
MILP solver, as it will be shown in the results). The mathematical formulations of the other

alternatives are available in the Supporting Information.

4.1. Organization of the Data Table of the Discrete Variables. For

Alternative 1, we have the following equations

dte = ¥S9M% pdtes, ydsg (41)
dti = ¥38max pdti ., ydgg (42)
Ds = gg.;max PDsst YDsgps (43)
lay = Yoo playsay Y1aysiay (44)
Npt = Sonbims” PNptsnpe YNDtshpe (45)
P = Naae PTPsipYTDsrp (46)
L= ZSLmax pLg yLgy, 47)
Nb = ?%23{1 x mswb YNbgyp (43)

with the following equations needed to guarantee only one choice among many:

sdmaxyd g = =1 (49)
gggmax yDSst =1 (50)
l
Zilgzlfx ylaYSlay =1 (51)
Zsztmax Not =1 52
snpt=1 Y!VPlsnpt (52)
Yorpoa YrPsrp =1 (53)
SLmaxyL L= =1 (54)

NbZ1™ YNbgyp =1 (35)



According to the aggregation strategy employed in the development of the new

MILP formulations, the parameters that represent the discrete values can be grouped in one

or more tables. Therefore, several discrete values of the design variables are identified by

the same index (a multi-index related to the corresponding original indices). For example,

in Alternative 5, the multi-index srow represents the discrete values of all design variables.

The corresponding set of parameters which compose the table are defined from the original

ones, as follows
Pdteg o = pdtegy

Pdtig on = pdtigy

)

Playsow = {ﬂayslay

—

PNptsow = prtszt
P/r\psrsrow = p/r\psrp
strow = ﬁsL

E——

PNbgow = PNbgyp

(56)
(57)
(58)
(39)
(60)
(61)
(62)

(63)

Consequently, different discrete variables become associated to the same set of

binaries. In Alternative 5, all discrete variables are described by the set of binaries yrowsrow,

thus yielding:
dte = Y orow Pdtes on YToWsrow
dti = Vsrow Pdtisrow YTOWsron
Ds = Ysrow PDSsrow YT OWsrow
lay = Ysrow Alaysrow YTroWsrow
Nt = Zsrow PNDtsrow YTOWsron

rp = Zsrow PrpsrowYTOWsrow

(64)
(65)
(66)
(67)
(68)

(69)



L= Zsrow ﬁsraw YTrOWspow (70)

Nb = Zsrow PNbsrow YTroWsyow (71)

Zsrow YTrOWspow = 1 (72)

4.2. Model Reformulation. In this step, the model equations are modified through
the substitution of the discrete variables by their binary representation. This reformulation
step also involves a procedure for the organization of the resultant expressions containing
binary variables, as described in the following paragraphs.

As stated, the relation between a design variable x and their discrete values xd;, using
binary variables y;, is expressed by egs. (39) and (40), where / can be a multi-index.

The substitution of a set of discrete variables p, g, ... , z by its binary representation
in the heat exchanger model yields terms of the form p™1g™2 --- z™™ that are substituted as
follows:

Pnlqnz ez = [Ziﬁai J’Pi]nl [Zj C/laj }’Clj]n2 Xk Eak yzi "™ (73)

Because all binary variables are equal to 1 only once in the corresponding set, this

equation is equivalent to:

n2 — nl— n2

— nm
pMq"? 2" =X kpd; qd; ..qdi YP; Y4 - Y2k (74)
After the application of this procedure, the reformulated model becomes composed

of several expressions containing multiple summations of products of binary variables.

4.3. Conversion to a Linear Model. The product of binaries obtained from the
discrete variable substitution can be reorganized in equivalent linear expressions, as
discussed below.

Let the product of binaries be substituted by a variable w;;,... s:

ni — nl— n2 — nm

p qnz‘“an=Zi,j,..dei qdj e qdy Wi ..k (75)



where:
Wij,.k = YPi Y4j - YZ (76)
However, the nonlinearity existent in this equation can be eliminated through the

substitution of this expression by the equivalent set of linear inequality constraints:

Wij,..k = YDi 7
Wij..k = Yq;j (78)
Wij.k = YZk (79)
Wij.k 2 YPi+ Yq;+ -+ yz, —(m—1) (80)

where m is the number of binary variables in the product. Since Alternative 5 contains only
one set of binary variables, this step is not necessary in its development, but it is fundamental

to the other alternatives with lower aggregation levels.

5. MILP FORMULATION WITH A SINGLE SET OF BINARIES
This section presents the complete linear formulation of the optimal heat exchanger
design problem based on a unique set of binary variables to represent the discrete options

of the design variables (Alternative 5).

5.1. Binary Variables Equality Constraints. This constraint imposes that only
one design alternative must be chosen:

Zsrow YroWsronw = 1 (81)

5.2. Heat Transfer Rate Equation. The expressions of all heat transfer
coefficients and the heat transfer area are inserted into the heat transfer equation, thus

yielding:



A Pdtesrow Pdtesrow
Q <ZSTOW PhtSrOW PdtlST'DW erWSTOW + th ZSTOW Pd erWSTOW +

J— Pdte
Yisrow Pdtesrow YTowgrow In ( srow)
Pdtisrow

2 ktube + RfS + Lsrow Fm— Ph yTOWsrow

<

N——

(m) ( Zsrow PNttsrow Pdtesrow PLsrowyrowsmw) m Fsrow (82}
where PNtt,,,1s the total number of tubes and:
_ Kt 0,023 (4 ) *pren 0,8
— #t PNDtsrow
Phtsrow = Pdtiys ( PNEtsrow ) (83)
— 75 0,36(2) XV (PNberou+1) 0,55
_ s srow
PhSST-OW o Pﬁqsrowo"}s (Fmsrow PFARsrow ﬁzsrow) (84)
— 1
PFAR =1—-—— 85
srow Prdsrow (85)
"D or a’[?q T WP/T\er wﬁtTtezr w P I
pDeqsrow = > Onlfd\tzssow =2 — Pdtegrow (86)
4 if splay =1
aDeqgrow = (87)
3.46 if slay = 2
( (R2+1)* 1n((1(:f 123)) if SNpt # 1

ﬁsrow — ! (R=1) 1n<2—ﬁ(§+1— (R2+ 1)0,5)> (88)

2—P(Te+1+(§2+ 1)0‘5)

1 if sNpt = 1

5.3. Bounds on Pressure Drops, Flow Velocities and Reynolds Numbers.

The bounds on the shell-side and tube-side pressure drops are expressed by:

ZSTOW PAPSST'OWerWSTOW S APSdlSp (89)
Ysrow PAPtturbl g oy yrow,, . + Yerow PAPttUrb2 gy, yrow,, . +
Y srow PAPtcabgy oy Ksrowyrow < APtdisp (90)

where:



1812 50,188 m +1 2,812
PAPs,,,, = 0.8647° & (A N Bsrow +1) ) 1)
ps PDSsrow

12 (PﬁRSTOWﬁZSTOW)l'slz (PDeqsrow) 1188

L
PAPtturbl,yy, = (0'“2 it )( P”’”STOWPL"OWS) (92)

m?pt PNttZ owPdtisrow

— — 12,58 57
41,58 741,58 70,42 ) PNpt238 Plgrow

- 1,58 4,58 (93)
158 pt PNttg, Pdtiga,

PAPtturb2,,,, = (0,528) (

. =2 ST 3
PAPECaDgpy = (S ) o — (94)

n? pt PNttZrowPdtisrow

The bounds on the shell-side and tube-side flow velocities are:

— ms PNDg,+1
USTIN < — X row o (PVDoront1) yrow (95)
ps PDSgrow PFARgrow PLsrow srow
— ms pNb. +1
VSMAX = — X o = (PNborowt1) yrow (96)
ps pDSSTDW PFARSTDW PLST‘OW srow
— 4mt PNpt
vtmin < —=—y_ ——Psrow_yrow (97)
mpt PNttgy o Pdtisrow srow
— 4mt PNpt
vtmax = — Y.qow Prrow  yrow (98)
m pt PNttg o, Pdtis o srow
The bounds on the Reynolds numbers are:
PDeq PNDb +1
Zsrow srow(PNbsrow +1) YT OWsroy = 2103 (99)
PD5srow PFARsrow PLsrow
4mt PNptsrow 4
T >1 1
Tl.'[lt ZST'OW PNtt srow Pdtlsrowy OWSTOW - O ( 00)

5.4. Geometric Constraints. The maximum and minimum baffle spacing

constraints are:

arc:

PL row 7Y

Zsrowm YTOWsyow <10 Zsrow PDSsrow YroWsrow (101)
PLsrow STy

Zsrowm YTroWsyow = 0.2 Zsrow PDSSTOW YroWsrow (102)

The constraints associating the ratio between the tube length and the shell diameter

ZSTOW Srow erWS‘I"OW S 15 ZSTOW PDSSTOW erWSTOW (103)



ZSTOW strow erWSTOW 2 3 ZSTOW P/D\SSTOW erWSTOW (104)

5.5. Objective Function. The expression of the objective function in relation to
the binary variables is given by:

Min 7 Zsrow mtsrow ﬁa?esrow /P\Lsrowyrowsmw (105)

5.6. Additional Constraints for the Reduction of the Search Space. These
extra sets of constraints aim to accelerate the search and are derived from the bounds on
velocities, shell-side pressure drop, and tube length/shell diameter ratio. A lower bound on

the heat transfer area is also included based on maximum flow velocities (see Gongalves et

al. (2016) for further details).

Flow velocities Bounds.

Yrowgow = 0 for (srow) € (Svsminout U Svsmaxout) (106)
Yrowgow = 0 for (srow) € (Svtminout U Svtmaxout) (107)

The sets Svsminout, Svsmaxout, Svtminout, and Svtmaxout are given by:

ms (PNb_.  +1)

srow < vsmin — &} (108)

Svsminout = {(srow) [/ — =— = —
{( ) /PS PDssrow PFARsrow PLsrow

s (PNb_. . +1)

srow®) > ysmax + &) (109)

Svsmaxout = {(STow) / — =— ST
{( ) / pS PDssyow PFARsrow PLsrow

, 47m PNpt
Svtminout = {(srow) / m P

— ———I% . < vEtmin — & (110)
mpt PNttsyow Pdtisrow

4mt PNpt
Svtmaxout = {(srow) | —— Psrow
TPt PNttsrow Pdtisrow

5 = vsmax + &} (111)

where ¢is a small positive number.



Shell-side Pressure Upper Bound.
Yrowgow = 0 for (srow) € SDPsmaxout

where the set SDPsmaxout is given by:

SDPsmaxout = {(srow) / PAPSg,,, = APsdisp + &}

Baffle Spacing.

Yrowgow <0 for (srow) € (SLNbminout U SLNbmaxout)

where the sets SLNbminout and SLNbmaxout are given by:

SLNbminout = {(sTow) / ="~ < 0.2PDso,, — &}
SLNbmaxout = {(srow) / % > 1.0PDSgroy + &}

Tube length / shell diameter ratio.

YroWsonw < 0 for (srow) € (SLDminout U SLDmaxout)
where the sets SLDminout and SLDmaxout are given by:

SLDminout = {(sTow) / PLgy,y < 3PDSgow — &}

SLDmaxout = {(sTow) / PLgo,, = 15PDsgyq, + &}

Heat Transfer Area.

Yrowgow = 0 for (srow) € SAminout

where the set of heat exchangers with area lower than the minimum possible is:
SAminout = {(srow) /m PNttsowPdtes owPLsrow < Amin — &

The lower bound on the heat transfer area can be determined by:

— Q
Amin = ———
UmaxATIlm
Umax = _
- 1 Pdtesrowln(dﬁ—rﬁn): RFs +

mdrmnﬁ Rft-drmin+ > kiibe

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)



hf?n\ax = maX(P/Etsrow) (124)

hsmax = max( Phsgoy) (125)
drmin = min(Pdteg,q,,/Pdtig o) (126)
6. RESULTS

The five aggregation alternatives of the discrete variables were applied to the sample
of ten thermal tasks proposed by Gongalves et al. (2016), involving different heating and
cooling services. Table 2 displays the description of each problem, and Tables 3 and 4 show
the hot and cold streams data. The standard values of the discrete variables employed in the
solutions are shown in Table 5, related to a fixed tube-sheet type exchanger with tube
thickness of 1.65 mm (BWG 16) and thermal conductivity of the tube wall equal to 50 W/m

K. The minimum excess area is 11% and the tube count data is based on Kakag et al. (2012).



Table 2. Design Tasks

Example 1 2 3 4 5
. Crude oil Crude oil Methanol Methanol Methanol
Service
cooler cooler cooler cooler heater
Hot stream Crude oil Crude oil Methanol Methanol Hot water
Cold stream Cooling water ~ Cooling water ~ Cooling water ~ Cooling water Methanol
Tube-side
Cold Cold Hot Hot Hot
stream
Example 6 7 8 9 10
Acetone Acetone
. Sucrose Sucrose
Service Ethanol cooler . . ethanol ethanol
solution heater  solution cooler
exchanger exchanger
Sucrose
Hot stream Ethanol Hot water . Ethanol Ethanol
solution
. Sucrose .
Cold stream Cooling water . Cooling water Acetone Acetone
solution
Tube-si
ube-side Cold Hot Cold Cold Hot

stream




Table 3. Hot Stream Data

Example 1 2 3 4 5 6 7 8 9 10
m 1100 500 27.8 694 400 556 400 833 1111 1111
(kals)

Inlet T

o) 90.0 1000 70.0 1000 2200 1500 2200 90.0  190.0  190.0
Olzt'é; T 500 500 400 400 1102 600 808 400 1200 1200
max AP o9 60 70 70 70 70 70 100 100 100
(kPa)

P 786 786 750 750 888 789 888 1080 789 789
(kg/m®)

K 189 189 034 034 015 067 015 130 067 067
(mPa-s)

cp 2177 2177 2840 2840 4312 2470 4312 3601 2470 2470
(U/kg-K)

k 012 012 019 019 070 017 070 058 017  0.17
(W/m-K)

Rf 50002 00002 00002 00002 00001 00002 00001 00001 0.0002 0.0002

(M2K/W)




Table 4. Cold Stream Data

Example 1 2 4 5 6 7 8 9 10
i (kg/s) 2288 1300 56.6 353.3 1333 2950 1333 3583 1667 166.7
'Q!%T 300 300 300 320 300 300 300 300 300 300
O‘(‘“g T 400 400 400 400 800 400 800 400 797 797
max 4P 444 50 100 70 70 70 70 100 100 100
(kPa)
P 995 995 995 995 750 995 1080 995 736 736
(kg/m°)
g 072 072 072 072 034 072 130 080 021 021
(mPa-s)
cp 4187 4187 4187 4187 2840 4187 3601 4187 2320 2320
(J/kg-K)
k
Wi 059 059 059 059 019 059 058 059 014 0.14
Rf

(M2K/W)

0.0004 0.0003 0.0002 0.0004 0.0001 0.0004 0.0001 0.0004 0.0002 0.0002

Table 5. Standard Values of the Discrete Design Variables

Variable

Values

Outer tube diameter pdtey, (M)
Tube length, pL,, (M)
Number of baffles, pNbgy,,
Number of tube passes, p’]@ts,\,pt
Tube pitch ratio, prps,,
Shell diameter, pDs,ps (M)

Tube layout, playsay

0.019, 0.025, 0.032, 0.038, 0.051

1.220,1.829,2.439, 3.049, 3.659, 4.877, 6.098

1,2,...

,20

1,2,4,6

1.25,1.33,1.50

0.787, 0.838, 0.889, 0.940,0. 991, 1.067, 1.143, 1.219, 1.372, 1.524

1 = square, 2 = triangular

These problems were solved using the five alternatives of MILP formulations

described in Table 1, implemented in the optimization software GAMS using the solver

CPLEX.



The comparison of the solution time demanded by each alternative (elapsed time)
and the time consumed by the solver itself are shown in Table 6, together with the optimal
value of the objective function (since all alternatives are MILP problems, the solution found
is always the same, corresponding to the global optimum). The computational times were
measured using a computer with a processor Intel Core 17 3.40 GHz with 12.0 GB RAM
memory.

Table 6. Performance Comparison

solution time (s)
solver time (s)

heat
example  transfer 1 2 3 4 5

area (m?)
DI A
2 319 o a 12 10 1
4 872 igg 151 151 2 132
s oowoomoowoyny
N A
7 207 gggg 195 152 ?1 132
8 914 %S 161 173 g 132
SN A
0w B8 moowoow
Average ) 1458.4 27.4 15.1 9.7 11.7

21.8 9.0 3.9 3.0




The solution times in Table 6 for the Alternative 1 differs slightly of those reported
in Gongalves et al. (2016) due to eventual computer performance fluctuations (the registered
times are wall times from new independent runs conducted in this paper for the same
problems).

The analysis of Table 6 indicates that the proposed procedure of aggregation of the
binary variables (Alternatives 2 to 5) allows large reductions of the computational effort in
relation to the original formulation (Alternative 1). The average time consumed by the
solver is associated to reductions ranging from 98.50% to 99.79%. The corresponding
reductions of the total elapsed time are similar, ranging from 98.1% to 99.33%.

Comparing the time consumed by the solver in the different alternatives, it is
possible to observe that there is a reduction trend from Alternative 1 to Alternative 5, i.e.
the increase of the binary variables aggregation decreases the solver time. The behavior of
the total elapsed time is similar, but the demand for processing larger data sets associated to
the variable aggregation procedure implies in slightly higher computing times before the
solver starts in these alternatives. Therefore, the lowest solver times is associated to the
Alternative 5, but the lowest elapsed times correspond to Alternative 4 (however, the

difference is only 2 s).

7. CONCLUSIONS

This paper presented an investigation aiming at the reduction of the computational
effort for the solution of the MILP problem for the design of shell and tube heat exchangers.
Several MILP formulations were proposed based on different alternatives of aggregation of
the discrete values of the design variables in relation to the binary variables.

In the original paper of Gongalves et al. (2016), where the MILP formulation was

proposed, each discrete value corresponds to a binary variable. The alternatives developed



in this paper tried to aggregate the discrete alternatives in tables, where each group of
discrete values becomes an individual binary variable.

The results showed that the aggregation of the binary variables allows a considerable
reduction of the computational effort to solve the MILP problem. Considering a sample of
10 design problems, the best aggregation alternative demanded only 0.21% of the total
solver time in comparison of the original MILP.

This performance gain is important because allows further investigations for the
inclusion of this model into more complex problems, such as, the insertion of the detailed

heat exchanger design into the heat exchanger network synthesis problem.
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NOMENCLATURE

Sets

sd = tube diameter, 1, ... , sdmax
sDs = shell diameter, 1, ..., sDsmax
sL =tube length, 1, ..., sLmax

slay = tube layout, 1... slaymax

sNb = number of baffles, 1, ..., sNbmax
sNpt = number of tube passes, 1, ..., sNptmax
srp = tube pitch ratio, 1, ..., srpmax

srow = multi-index


mailto:bagajewicz@ou.edu

Parameters

Aexc  =excess area, %

cp = heat capacity, J/kg K

g = gravity acceleration, m/s2

k = thermal conductivity, W/m K

m = mass flow rate, kg/s

l = 0.4 for heating services; 0.3 for cooling services
P = LMTD correction factor parameter

PDeqgpsasiay = €quivalent diameter, m
PDs,ps = shell diameter, m

Pdte,; = outer tube diameter, m
Pdti,; = inner tube diameter, m

PL = tube length, m

Playg,, =tube layout

PNbyy, = number of baffles

PNptsy,: = number of tube passes
PNtt,,,, = total number of tubes

Prps, = tube pitch ratio

Pr = Prandtl number

Q = heat duty, W

R = LMTD correction factor parameter
Rf = fouling factor, m? K/W

T = temperature, °C

= density, kg/m?®

»

= viscosity, Pa-s

=



APdisp = available pressure drop, Pa

ATIm  =log-mean temperature difference

Binary variables

yd,q = variable representing the tube diameter

yDsgps = variable representing the shell diameter

yL, = variable representing the tube length

ylaysq, = variable representing the tube layout

yNbgy, = Variable representing the number of baffles
yNptsy,e = Variable representing the number of tube passes
yrpsp = Variable representing the tube pitch ratio

yrows,,,, = vVariable representing the set of variables

Continuous variables

A = area, m?

Ar = flow area in the shell side, m?

d = tube diameter, m

Deq = 30quivalente diameter, m

Ds = shell diamenter, m

f=friction factor

F = correction factor to logarithmic mean temperature difference
h = convective heat transfer coefficient, W/m? K
K = pressure drop parameter

L = tube length, m

Ibc = baffle spacing, m

Itp = tube pitch, m



Nb = number of baffles

Npt = number of tube passes

Ntp = number of tubes per passes

Ntt = total number of tubes

Nu = Nusselt number

Re = Reynolds number

rp = tube pitch ratio

U = overall heat transfer coefficient, W/m? K
v = velocity, m/s

AP = pressure drop, Pa

Subscripts

c = cold fluid

h = hot fluid

i=inlet

o = outlet

s = shell-side

t = tube-side

tube = heat exchanger tube variable
max = maximum value

min = minimum value
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