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In this paper, we address the strategic planning of integrated bioethanol–sugar supply chains (SC) under uncertainty

in  the demand. The design task is formulated as a multi-scenario mixed-integer linear programming (MILP) problem

that  decides on the capacity expansions of the production and storage facilities of the network over time along

with  the associated planning decisions (i.e., production rates, sales, etc.). The MILP model seeks to optimize the

expected performance of the SC under several financial risk mitigation options. This consideration gives a rise to a

multi-objective formulation, whose solution is given by a set of network designs that respond in different ways to

the  actual realization of the demand (the uncertain parameter). The capabilities of our approach are demonstrated

through a case study based on the Argentinean sugarcane industry. Results include the investment strategy for the

optimal SC configuration along with an analysis of the effect of demand uncertainty on the economic performance

of  several biofuels SC structures.
© 2011 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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ethanol-fueled cars. By 1986, 72.6% of light vehicles sold
.  Introduction

thanol is nowadays regarded as a successful example of a
lobal shift away from fossil sources of energy to bio-based
uels. The use of ethanol as a transport fuel began in the 1970s,
nd was motivated by the oil crisis and the need to develop
lternative fuel programs for reducing the dependence on oil.
mong the various alternative fuels, ethanol is one of the
ost suitable ones for spark-ignition engines. It is produced

rom renewable sources and does not contain the impuri-
ies present in petroleum-derived products, such as sulphur
ompounds and carcinogenic aromatics, which are the main
ources of pollution in large metropolitan areas. Ethanol and
thanol–gasoline blends have several advantages over con-
entional gasoline such as the reduction of fossil-originated

O2 emissions, better anti-knock characteristics, and higher
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power output and fuel economy (Hsieh et al., 2002). More-
over, the higher auto-ignition temperature and flash point of
ethanol lead to lower evaporation loses (Niven, 2005). The use
of ethanol has also some disadvantages such as the increase
of NOx and noise emissions (Bayraktar, 2005; Keshkin, 2010). In
addition, the gasoline blends with ethanol have a tendency to
absorb water and therefore require special storage conditions
to prevent a degradation of fuel properties (Muzikova et al.,
2009).

Fuel ethanol was firstly adopted by Henry Ford in 1896. The
large-scale production of ethanol for the transportation sec-
tor, however, did not begin until the late 1970s, and took place
mainly in Brazil and US. In 1975, Brazil launched the national
alcohol program Pró-álcool sponsoring the development of
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Nomenclature

Indices
e scenario
i material
g sub-region
k target value
l transportation mode
p manufacturing technology
s storage technology
t time period

Sets
IL(l) set of materials that can be transported via

transportation mode l
IM(p) set of main products for each technology p
IS(s) set of materials that can be stored via storage

technology s
SEP set of products that can be sold
SI(i) set of storage technologies that can store mate-

rials i

Parameters
˛PL

p,g,t fixed investment coefficient for technology p
˛S

s,g,t fixed investment coefficient for storage tech-
nology s

 ̌ storage period
ˇPL

p,g,t variable investment coefficient for technology
p

ˇS
s,g,t variable investment coefficient for storage

technology s
�p,i material balance coefficient associated with

material i and technology p
� minimum desired percentage of the available

installed capacity
ϕ tax rate
avll availability of transportation mode l
CapCropg,t total capacity of sugar cane plantations in

sub-region g in time t
DWl,t driver wage
ELg,g′ distance between g and g′

FCI upper limit on the capital investment
FEl fuel consumption of transport mode l
FPl,t fuel price
GEl,t general expenses of transportation mode l
LTi,g landfill tax
MEl maintenance expenses of transportation mode

l
PCapp maximum capacity of technology p
PCapp minimum capacity of technology p

PRi,g,t prices of final products
Ql maximum capacity of transportation mode l
Ql minimum capacity of transportation mode l
SCaps maximum capacity of technology p
SCaps minimum capacity of storage technology s
SDi,g,t,e demand of product i in sub-region g in time t in

scenario e
SPl average speed of transportation mode l
sv salvage value
T number of time intervals
TCapl capacity of transportation mode l

TMCl,t cost of establishing transportation mode l in
period t

UPCi,p,g,t unit production cost
USCi,s,g,t unit storage cost

Variables
CFt,e cash flow in time t in scenario e
DCt,e disposal cost in time t in scenario e
DTSi,g,t,e amount of material i delivered in sub-region g

in period t in scenario e
FCt,e fuel cost in time t in scenario e
FCI fixed capital investment
FOCt,e facility operating cost in time t in scenario e
FTDCt,e fraction of the total depreciable capital in time

t in scenario e
GCt,e general cost in time t in scenario e
LCt,e labor cost in time t in scenario e
MCt,e maintenance cost in time t in scenario e
NEt,e net earnings in time t in scenario e
NPp,g,t number of plants operating with technology p

installed in sub-region g in time t
NPVe net present value in scenario e
NSs,g,t number of storage facilities of type s estab-

lished in sub-region g in time t
NTl,t number of transportation units l
PCapp,g,t capacity of technology p in sub-region g in time

t
PCapEp,g,t capacity expansion of technology p executed

in sub-region g in time t
Qi,l,g,g′,t,e flow rate of material i transported by mode l

from sub-region g′ to sub-region g in time t in
scenario e

Revt,e revenue in time t in scenario e
SCaps,g,t capacity of storage s in sub-region g in time t
SCapEs,g,t capacity expansion of storage s in sub-region

g in time t
STi,s,g,t,e total inventory of material i in sub-region g

stored by technology s in time t in scenario e
TOCt,e transport operating cost in time t in scenario e
PEi,p,g,t,e production rate of material i produced by tech-

nology p in sub-region g in time t in scenario
e

PTi,g,t,e total production rate of material i in sub-region
g in time t in scenario e

PUi,g,t,e purchase of material i in sub-region g in time t
in scenario e

Xl,g,g′,t binary variable (1 if a transportation link of type
l is established between sub-regions g and g′ in
period t, and 0 otherwise)

Wi,g,t,e amount of waste i generated in sub-region g in
time t in scenario e
2009). In 1976, the ethanol–gasoline blend became manda-
tory in Brazil. Since 2007, this blend should contain at least
25% of ethanol. With this energy policy, the percentage of
renewable energy in the Brazilian energy matrix reached 45%
in 2006 (Dias Leite, 2009). In 1978, the US Congress approved
the Energy Tax Act to promote the usage of renewable energy
through taxes and tax credits, and as result, USA overtook

Brazil as the biggest ethanol producer in 2005, and by 2009,
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here were 170 ethanol distilleries with a total annual capacity
0.6 billion of gallons(RFA, 2009).

Vast investments, government sponsorship and tax incen-
ives made Brazil and US the world leaders in ethanol
roduction, currently covering about 90% of the ethanol pro-
uction worldwide. Other countries have also started to adopt

egislation and sponsor bioethanol programs. In 2007, the
rgentinean Government published the Law 26,093 on biofu-
ls, which has the target of achieving by 2010 a mix  of 5% of
thanol in gasoline and 5% of bio-diesel in diesel. The Colom-
ian Law 693 published in 2001 established a limit of 10%
thanol blend by 2006, and a 25% blend within 15 years. In
hailand, the goal is to achieve a 10% ethanol blend by 2011. In

ndia, the Indian Ethanol Blended Petrol (EBP) program speci-
es a target of 5% ethanol gasoline blends. Canada also started
o provided tax benefits for ethanol producers and consumers
n 1992. The EU is no exception to this general trend, having
stablished quantitative targets for the use of biofuels. Partic-
larly, by 2010, it plans to replace 5.75% of diesel and gasoline
y biofuels (Olsson, 2007).

The adoption of alternative energy sources has recently
reated a clear need for decision-support tools to assist in
he design of infrastructures for biofuels production from
iomass. Among the available methods, those based on math-
matical programming have gained wider interest in the
ecent past. The main advantage of these tools is their capabil-
ty of generating and assessing a very large number of process
lternatives, from which the optimal one is selected. The
revalent approaches in this area have relied on linear pro-
ramming (LP) and mixed-integer linear programming (MILP).

Several models have been proposed for optimizing
ioethanol SCs. Yoshizaki et al. (1996) introduced an LP model
o find the optimal distribution of sugarcane mills, fuel bases
nd consumer cites in southeastern Brazil. Kawamura et al.
2006) presented an LP model to minimize the transportation
nd external storage costs of the existing sugar/ethanol SC
n Brazil. Ioannou (2005) applied an LP optimization model to
educe the transportation cost in the Greek sugar industry. The
ILP model of Milan et al. (2006) minimizes the transporta-

ion cost of the sugarcane SC in Cuba. Dunnett et al. (2008)
eveloped a combined production and logistic model to find
he optimal configuration of lignocellulosic bioethanol SCs.
amboni et al. (2009) presented a mathematical model to min-

mize the total daily cost of a static corn-based bioethanol SC.
athematical programming methods associated with planta-

ion planning and scheduling can also be found in the works
y Grunow et al. (2007), Paiva and Morabito (2009), Colin (2009)
nd Higgins and Laredo (2006).

The environmental assessment of bioethanol production
as gained wider interest in the recent past. Several mod-
ls have been presented so far to optimize simultaneously
he economic and environmental performance of bioethanol
Cs. These approaches have mainly focused on reducing the
reenhouse gas (GHG) emissions of the biofuel infrastructure.
amboni et al. (2009) formulated a multi-objective optimiza-
ion model to reduce the GHG emissions associated with the
uture corn-based Italian bioethanol network. Later, Giarola
t al. (2011) extended this model by adding second genera-
ion bioethanol production technologies. It has been argued
hat minimizing exclusively the GHGs emission in the design
f ethanol infrastructures can lead to solutions that reduce
uch emissions at the expense of increasing other negative

ffects (mainly the destruction of the native tropical eco-
ystems and soil erosion) (Scharlemann and Laurance, 2008;
Vries et al., 2010). To overcome this limitation, Mele et al.
(2011) developed a bi-criteria model that maximizes the profit
and minimizes the life cycle environmental impact of com-
bined sugar/bioethanol SCs. The latter criterion was measured
through two environmental indicators: the eco-indicator 99
(Goedkoop and Spriensma, 1999), which accounts for eleven
life cycle environmental impacts pertaining to several damage
categories, and the global warming potential.

The studies mentioned above assume that all model
parameters are perfectly known in advance (i.e., they are
constant). In practice, however, some of them, especially
the demand, show certain degree of variability and can
therefore be regarded as uncertain. Various approaches have
been proposed to formulate and solve optimization models
with uncertain parameters (see Sahinidis, 2004). Particularly,
two-stage stochastic programming is probably the preva-
lent approach to deal with optimization under uncertainty
(Liu and Sahinidis, 1996). Two-stage stochastic formulations
involve two types of decisions: first stage decisions that must
be made before the realization of the uncertain parame-
ters, and second stage decisions that are taken once the
uncertainty is unveiled. The goal is to choose the first-stage
variables in a way that the expected value of the objective
function is maximized or minimized over all the scenarios.
Robust optimization is an alternative approach to handle
uncertainties that relies on the use of chance-constraints. Fol-
lowing this approach, the original robust stochastic model
is typically substituted by a deterministic formulation with
several equations representing the probabilistic statements
expressed through chance constraints (Li et al., 2008). The
main drawback of this technique is that it does not include
second-stage variables, that is, it does not quantify the effect
of each uncertain outcome when it materializes. Fuzzy pro-
gramming (Zimmermann, 1991) is another approach to deal
with uncertainties that relies on modeling the random param-
eters as fuzzy numbers and treating the model constraints as
fuzzy sets.

To the best of our knowledge, there are only two  works
in the literature that have accounted for uncertainties in the
optimization of biofuel infrastructures. Dal-Mas et al. (2011)
proposed a scenario-based MILP model that maximizes the
expected profit and minimizes the financial risk of the corn-
to-ethanol production SC in Northern Italy. The model takes
into account the uncertainty of the corn purchase cost and
ethanol selling price. Kim et al. (2011) presented a two-stage
MILP model for optimizing a bio-oil network in the SE region
of the US under uncertainty in 14 key model parameters. The
authors performed also a sensitivity analysis to estimate key
factors affecting the SC performance.

This article introduces a novel two stage MILP formula-
tion for the strategic planning of SCs for bioethanol and sugar
production under demand uncertainty. To the best of our
knowledge, this is the first contribution that addresses explic-
itly the uncertainty associated with the bioethanol and sugar
demand and analyzes its impact on the optimal SC struc-
ture and economic performance of the network considering
several risk metrics. A decomposition strategy based on the
sample average approximation (SAA) (Verweij et al., 2003)
algorithm is also presented to efficiently solve the underlying
stochastic MILP. This algorithm provides as output a set of SC
design alternatives that behave in different ways in the face of
uncertainty.

The remainder of this article is organized as follows. In

Section 2, the problem under study is formally stated, and
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Fig. 1 – Structure of the bioethanol/sugar SC.
the assumptions made are briefly described. The problem
data, decision variables and objectives are also listed at this
point. In Section 3, we describe a two-stage stochastic model
for the design and planning of bioethanol SCs that considers
explicitly the demand variability. In Section 4, we introduce a
decomposition method based on the SAA algorithm that pro-
vides approximate solutions to the multi-objective stochastic
formulation in short CPU times. In Section 5, the proposed
approach is applied to a real case study based on the sugar-
cane industry of Argentina, for which valuable insights are
obtained. The conclusions of the work are finally drawn in the
last section of the paper.

2.  Problem  statement

Fig. 1 depicts the SC structure we use in our work. We  ana-
lyze integrated infrastructures for the combined production of
ethanol and sugar, in which final products (ethanol, white and
raw sugars) are stored in warehouses before being delivered to
the final markets. Two different types of storage facilities are
considered that are suitable for solid (S1) and liquid (S2) mate-
rials, respectively. The SC facilities can be located in different
sub-regions, and are connected via transportation links. We
consider three types of vehicles: heavy trucks for sugarcane
(TR1), lorries for sugars (TR2), and tank trucks for ethanol and
all types of vinasse (TR3).

The problem addressed in this article can be formally
stated as follows. Given are a set of potential locations for the

SC facilities, the capacity limitations associated with these
technologies, the demand and prices of final products and
raw materials and the investment and operating cost of the
network. The demand is assumed to be uncertain, and it is
described through a set of scenarios with a given probability
of occurrence. The goal of the study is to determine the config-
uration of the SC along with the associated planning decisions
that maximize its economic performance under uncertainty.

3. Stochastic  mathematical  model

3.1. General  features

The general structure of the mathematical model presented
next is based on previous works by the authors (see Guillén-
Gosálbez and Grossmann, 2009 and Guillén-Gosálbez et al.,
2009). Our model has been originally devised bearing in mind
the main features of the sugarcane industry of Argentina, but
it is general enough to be easily extended to any other supply
chain with similar characteristics.

Argentina has abundant natural resources and an efficient
agricultural sector (Ken and Wilder, 2010). Sugarcane, in par-
ticular, shows several appealing characteristics compared to
other products, such as its resistance, rapid growth and uptake
capacity for atmospheric carbon. This makes sugarcane a suit-
able feedstock for biofuels production. The main advantage of
the production of ethanol from sugarcane is its positive energy
balance (Goldemberg et al., 2008). Unfortunately, the use of
ethanol in Argentina has the disadvantage of competing with
sugar, because both of them share the same raw material. A
key issue in the optimization of bioethanol infrastructures in
Argentina is then the assessment of the interactions between
both competing products.

The following assumptions, some of which are based on
the particular features of the Argentinean sugarcane industry,
are applied in the derivation of our model:

Production. It is assumed that the juice is extracted from
sugarcane mainly by milling. Sugar mills use this juice to pro-
duce white sugar and raw sugar. There are two  technologies
that follow the “sugarcane-to-sugar” pathway. One of them
generates molasses (T1) as a byproduct, whereas the other one
produces a secondary honey (T2) in addition to sugars. These
two byproducts differ in their sucrose content. Molasses is a
viscous dark honey whose low sucrose content cannot be sep-
arated by crystallization, while the secondary honey is a honey
with a larger amount of sucrose that leaves the sugar mill
before being exhausted by crystallization. Anhydrous ethanol
can be produced by fermentation and subsequent dehydra-
tion of different process streams: molasses (T3), honey (T4),
and sugarcane juice (T5). Thus, the model considers a total of
five different technologies, two for sugar production and three
types of distilleries. The details of each technology, includ-
ing the mass balance coefficients, are shown in Fig. 2, where
residuals, loses and wastes are omitted. We assume that the
bagasse is completely utilized for internal purposes, so there
is a total of nine materials classified into raw materials, by-
products, and final products: sugarcane, ethanol, molasses,
honey, white sugar, raw sugar, vinasse type 1, vinasse type 2
and vinasse type 3. Each plant incurs fixed capital and operat-
ing cost, and can be expanded in capacity over time in order
to follow a specific demand pattern.

Storage. The model includes two different types of storage
facilities: warehouses for liquid products (S1), and warehouses

for solid materials (S2). For each storage facility type, we  con-
sider specific fixed capital and unit storage costs, along with
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Fig. 2 – Set of pro

ower and upper limits on its capacity expansions. Similarly,
s with the plants, the storage capacity might be expanded in
rder to follow changes in the demand as well as in the supply.

Transportation. Transportation units deliver the final prod-
cts to the customers, supply the production plants with
aw materials, and dispose the process wastes. The model
ssumes that the materials can be transported by three differ-
nt types of trucks: heavy trucks with open-box bed for sugar
ane (TR1), medium trucks for sugar (TR2), and tank trucks
or liquid products (TR3). Each transportation mode has fixed
apital and unit transportation costs, and lower and upper
imits on its capacity. Both storage and transportation modes
onsidered in the model are shown in Fig. 3.

.2. Model  structure:  two-stage  stochastic
rogramming

 number of deterministic models have been published to
odel and optimize the structure of SCs (Chen and Wang,

997; Timpe and Kallrath, 2000; Bok et al., 2000; Almansoori
nd Shah, 2006). These models assume that all model param-
ters are perfectly known in advance and do not show
ariability. In practice, however, there are numerous techni-
al and market uncertainties that affect the calculations. One
f the most important sources of uncertainty in any SC is
he product demand. Failure to properly account for product

emand fluctuations may result in either unsatisfied customer
emand or excess of products. The first scenario leads to a loss
ion technologies.

of potential revenues and market share, whereas the second
one generates large inventory costs.

We introduce next a two-stage stochastic programming
MILP model to address the strategic planning of biofuels SCs
under demand uncertainty. The equations of the model are
roughly classified into three main blocks: mass balance equa-
tions, capacity constraints and objective function equations.
With regard to the variables, these are divided into two  main
groups:

• First-stage,  or here-and-now decisions, which are taken before
the uncertainty unveils. In our work, the SC design deci-
sions, namely the number of production, storage and
transportation units, and their initial capacities and capac-
ity expansions over the time horizon are considered as first
stage decisions. The reason for this is that we assume that
they are taken at the beginning of the time horizon, before
the demand is known.

• Second-stage, or wait-and-see decisions, which are taken once
the uncertainty is materialized. They include the amount of
products to be produced and stored, the flows of materials
transported among the SC entities and the product sales. As
will be shown later in the article, the second-stage variables
include a subscript e that denotes the particular scenario
realization for which they are defined.
The sections that follow describe in detail all the variables and
constraints of the model.
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Fig. 3 – Set of storage and transportation technologies.
3.3.  Mass  balance  constraints

The overall mass balance for each sub-region is enforced via
Eq. (1).  For every material form i and scenario e, the initial
inventory kept in sub-region g (STi,s,g,t−1,e) plus the amount
produced (PTi,g,t,e), the amount of raw materials purchased
(PUi,g,t,e) and the input flow rate from other facilities in the
SC (Qi,l,g′,g,t,e) must equal the final inventory (STi,s,g,t,e) plus the
amount delivered to the customers (DTSi,g,t,e) plus the output
flow to other facilities in the SC (Qi,l,g,g′,t,e) and the amount of
waste (Wi,g,t,e).

∑
s∈SI(i)

STi,s,g,t−1,e + PTi,g,t,e + PUi,g,t +
∑
l∈LI(i)

∑
g′ /=  g

Qi,l,g′,g,t,e

=
∑
s∈SI(i)

STi,s,g,t,e + DTSi,g,t,e +
∑
l∈LI(i)

∑
g′ /=  g

Qi,l,g,g′,t,e

+Wi,g,t,e ∀i, g, t, e (1)

In this equation, SI(i) represents the set of technologies that
can be used to store product i, whereas LI(i) is the set of trans-
port modes suitable for product i.

For each scenario e, the total production rate of material i
in sub-region g is determined from the production rates asso-
ciated with each technology p installed in that sub-region
(PEi,p,g,t,e):

PTi,g,t,e =
∑

p

PEi,p,g,t,e ∀i, g, t, e (2)

The production rates of byproducts and the consumption
rates of raw materials associated with each technology are
calculated in each scenario e from the material balance coef-
ficient �pi, and the production rate of the main product:

PEi,p,g,t,e = �p,iPEi′,p,g,t,e ∀i, p, g, t, e ∀i′ ∈ IM(p) (3)

In this equation, IM(p) represents the set of main products
associated with each technology. Fig. 2 shows the material
balance coefficients of the main products (white sugar and

ethanol). Note that these parameters are typically normalized
to 1.
For each scenario e and time interval t, the purchases of
sugarcane are limited by the capacity of the existing sugarcane
plantation in sub-region g:

PUi,g,t,e ≤ CapCropg,t i = Sugarcane, ∀g, t, e (4)

The total inventory of product i stored at the end of the
time interval t in each scenario e (STi,s,g,t,e) must be less than
or equal to the available storage capacity (SCaps,g,t):

∑
i∈IS(s)

STi,s,g,t,e ≤ SCaps,g,t ∀s, g, t, e (5)

The average inventory in scenario e (AILi,g,t,e) is a function of
the amount delivered to the customers and the storage period
ˇ:

AILi,g,t,e = ˇDTSi,g,t,e ∀i, g, t, e (6)

The storage capacity (SCaps,g,t) that should be established in
a sub-region in order to cope with fluctuations in both supply
and demand, is twice the summation of the average inventory
levels of products i (Simchi-Levi et al., 2000) in each scenario
e:

2AILi,g,t,e ≤
∑
s∈SI(i)

SCaps,g,t ∀i, g, t, e (7)

Furthermore, the amount of product i delivered to the final
markets located in region g in scenario e and period t should be
less than or equal to the corresponding demand in that region
(SDi,g,t,e):

DTSi,g,t,e ≤ SDi,g,t,e ∀i, g, t, e (8)

3.4.  Capacity  constraints

The production rate of each technology p in sub-region g and
scenario e must lie between the minimum desired percentage
of the available technology that must be utilized, �, multi-
plied by the existing capacity (represented by the continuous
variable PCapp,g,t) and the maximum capacity:
�PCapp,g,t ≤ PEi,p,g,t,e ≤ PCapp,g,t ∀i, p, g, t, e (9)
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The capacity of technology p in any time period t is cal-
ulated from the existing capacity at the end of the previous
eriod and the expansion in capacity, PCapEp,g,t, carried out in
eriod t:

Capp,g,t = PCapp,g,t−1 + PCapEp,g,t ∀p, g, t (10)

Eq.(11) limits the capacity expansion PCapEp,g,t between
pper and lower bounds, which are calculated from the num-
er of plants installed in the sub-region (NPg,p,t) and the
inimum and maximum capacity associated with each tech-

ology p (PCapp and PCapp, respectively).

CappNPp,g,t ≤ PCapEp,g,t ≤ PCappNPp,g,t ∀p, g, t (11)

The storage capacity must lie within certain lower and
pper bounds that are calculated from the number of storage

acilities installed in sub-region g (NSs,g,t) and the minimum
nd maximum storage capacities (SCaps and SCaps, respec-
ively) associated with each storage technology:

CapsNSs,g,t ≤ SCapEs,g,t ≤ SCapsNSs,g,t ∀s, g, t (12)

The capacity of a storage technology s in region g and time
eriod t is determined from the existing capacity at the end
f the previous period and the expansion in capacity in the
urrent period (SCapEs,g,t):

Caps,g,t = SCaps,g,t−1 + SCapEs,g,t ∀s, g, t (13)

The materials flows  in scenario e are constrained within
ome minimum and maximum allowable capacity limits (Ql

nd Ql, respectively):

lXl,g,g′,t ≤
∑
i∈IL(l)

Qi,l,g,g′,t,e ≤ QlXl,g,g′,t ∀l, t, g, g′(g′ /= g), e (14)

In this equation, IL(l) represents the set of materials that
an be transported via transportation mode l.

.5.  Objective  function

he model shows a different economic performance in each
cenario. In our case, this economic performance is measured
hrough the net present value (NPV). Thus, one objective of
he mathematical formulation is to maximize the expected
alue of the resulting NPV distribution. Certain risk metrics
re also appended to the objective function in order to control
he probability of unfavorable scenarios with low NPV val-
es. The sections that follows describe how these metrics are
etermined.

.5.1.  Expected  NPV
ne of the objectives of the model is to maximize the expected
PV. This metric is determined as follows:

[NPV] =
∑

e

preNPVe (15)
here pre is the probability of scenario e, and NPVe is the net
resent value attained in the same scenario. The latter term
is determined from the cash flows (CFt,e) generated in each of
the time intervals t in which the total time horizon is divided:

NPVe =
∑

t

CFt,e

(1 + ir)t−1
∀e (16)

In this equation, ir represents the interest rate. The cash
flow in period t is determined from the net earnings NEt,e (i.e.,
profit after taxes), and the fraction of the total depreciable
capital (FTDCt) that corresponds to that period as follows:

CFt,e = NEt,e − FTDCt t = 1, . . . , T − 1, ∀e (17)

When determining the cash flow of the last time period
(t = T), we  consider that part of the total fixed capital invest-
ment (FCI) will be recovered at the end of the time horizon. This
amount, which represents the salvage value of the network
(sv), may vary from one type of industry to another.

CFt,e = NEt,e − FTDCt + svFCI t = T, ∀e (18)

The net earnings are given by the difference between the
incomes (Revt,e) and the facility operating (FOCt,e), and trans-
portation cost (TOCt,e), as stated in Eq.(19):

NEt,e = (1 − ϕ)(Revt,e − FOCt,e − TOCt,e) + ϕDEPt,e ∀t, e (19)

In this equation, ϕ denotes the tax rate. The depreciation
term is calculated with the straight-line method:

DEPt = (1 − sv)FCI

T
∀t (20)

where FCI denotes the total fixed cost investment, which is
determined from the capacity expansions made in plants and
warehouses as well as the purchases of transportation units
during the entire time horizon as follows:

FCI =
∑

p

∑
g

∑
t

(˛PL
p,g,tNPp,g,t + ˇPL

p,g,tPCapEp,g,t)

+
∑

s

∑
g

∑
t

(˛S
s,g,tNSs,g,t + ˇS

s,g,tSCapEs,g,t)

+
∑

l

∑
t

(NTl,tTMCl,t) (21)

Here, the parameters ˛PL
p,g,t, ˇPL

p,g,t and ˛S
sgt, ˇS

sgt are the fixed
and variable investment terms associated with plants and
warehouses, respectively. On the other hand, TMCl,t is the pur-
chase cost associated with the transportation mode l. The
average number of trucks required to satisfy a certain flow
between different sub-regions is calculated from the flow rate
of products between the sub-regions, the transportation mode
availability (avll), the capacity of a transport container, the
average distance traveled between the sub-regions, the aver-
age speed, and the loading/unloading time, as stated in Eq.
(22):

∑
NTl,t =

∑∑∑∑ Qi,l,g,g′,t
(2ELg,g′ + LUTl

)
∀l
t≤T i∈IL(l) g g′ /=  g t
avllTCapl SPl

(22)
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The revenues are determined from the sales of final prod-
ucts and the corresponding prices (PRi,g,t):

Revt,e =
∑
i∈SEP

∑
g

DTSi,g,t,ePRi,g,t ∀t, e (23)

In this equation, SEP(i) represents the set of materials i
that can be sold. The facility operating cost is obtained by
multiplying the unit production and storage costs (UPCi,p,g,t

and USCi,s,g,t, respectively) with the corresponding produc-
tion rates and average inventory levels, respectively. This term
includes also the disposal cost (DCt,e):

FOCt,e =
∑

i∈IM(p)

∑
p

∑
g

UPCi,p,g,tPEi,p,g,t,e

+
∑
i∈IS(s)

∑
s

∑
g

USCi,s,g,tAILi,g,t,e + DCt,e ∀t, e (24)

The disposal cost is a function of the amount of waste gen-
erated and landfill tax (LTig):

DCt,e =
∑

i

∑
g

Wi,g,t,eLTig ∀t, e (25)

The transportation cost includes the fuel (FCt,e), labor (LCt,e),
maintenance (MCt,e) and general (GCt,e) costs:

TOCt,e = FCt,e + LCt,e + MCt,e + GCt,e ∀t, e (26)

The fuel cost is a function of the fuel price (FPl,t) and fuel
usage:

FCt,e =
∑
i∈IL(l)

∑
g

∑
g′ /=  g

∑
l

[
2ELg,g′Qi,l,g,g′,t,e

FElTCapl

]
FPl,t ∀t, e (27)

In Eq. (27), the fractional term represents the fuel usage,
which is determined from the total distance traveled in a trip
(2ELg,g′ ), the fuel consumption of transport mode l (FEl) and the
number of trips made per time period (Qi,l,g,g′,t,e/TCapl). This
equation considers that the transportation units operate only
between two predefined sub-regions. Furthermore, as shown
in Eq. (28), the labor transportation cost is a function of the
driver wage  (DWl,t) and total delivery time (term inside the
brackets):

LCt,e =
∑
i∈IL(l)

∑
g

∑
g′ /=  g

∑
l

DWl,t

[
Qi,l,g,g′,t,e

TCapl

(2ELg,g′
SPl

+ LUTl

)]

× ∀t, e (28)

The maintenance cost accounts for the general mainte-
nance of the transportation units, and is a function of the cost
per unit of distance traveled (MEl) and total distance driven:

∑∑∑∑ 2ELg,g′Qi,l,g,g′,t,e

MCt,e =

i∈IL(l) g g′ /=  g l

MEl TCapl

∀t, e (29)
Finally, the general cost includes the transportation insur-
ance, license and registration, and outstanding finances. It
can be determined from the unit general expenses (GEl,t) and
number of transportation units (NTl,t), as follows:

GCt =
∑

l

∑
t′≤t

GEltNTlt′ ∀t (30)

The total capital investment can be constrained to be lower
than an upper limit, as stated in Eq. (31):

FCI ≤ FCI (31)

The model assumes that the depreciation is linear over the
time horizon, so the amount of capital investment paid in each
time period (FTDCt) is calculated as follows:

FTDCt = FCI

T
∀t (32)

While NPV has been thoroughly used in several SC designs,
caution ought to be exercised. In fact, as pointed out by
Bagajewicz (2008),  maximizing NPV without control of the cap-
ital to invest can lead to solutions that have marginal profit
far inferior in terms of return of investment (ROI), which is
an alternative objective that one could use. In our case, to
overcome this limitation, we limit the FCI.

3.6.  Probabilistic  metrics  for  financial  risk
management

The variability of the objective function can be controlled by
adding to the model a set of constraints that measure the
probability of not attaining a predefined target value ˝. The
calculation of these probabilities requires the definition of the
binary variable Ze. This variable takes the value of 1 if the NPV
attained in scenario e is below the target level ˝, and it is 0
otherwise. The definition of such a variable is enforced via the
following constraints:

NPVe ≤  ̋ + M(1  − Ze) ∀e (33)

NPVe ≥  ̋ − MZe ∀e (34)

These equations work as follows. If the binary variable
takes a value of 1, then constraint Eq. (33) will force the NPV
to be lower than the target value in scenario e, whereas con-
straint Eq. (34) will be inactive. If the binary variable is 0, then
Eq. (33) will be inactive and constraint Eq. (34) will ensure that
the NPV in that particular scenario lies above the target value.
The probability of having an NPV below ˝ is calculated as
follows:

Prob[NPV ≤ ˝k] =
∑

e

preZk,e (35)

where pre denotes the probability of scenario e. An example
of the definition of these probabilistic metrics in a particu-
lar stochastic problem is given in Fig. 4. This figure depicts
the cumulative probability curve associated with a given SC
design, considering a stochastic formulation with 100 scenar-
ios, each one corresponding to a different materialization of
the uncertain parameter (i.e., the demand). Assume that the

target  ̋ is equal to US$350 million. For this particular SC struc-
ture, there are 14 scenarios out of 100 with an NPV below this
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Fig. 4 – Cumulative probability curves.

arget value (i.e., the probability of not exceeding the target
alue is 14%).

In general, the shape and slope of this cumulative
robability curve can be manipulated according to the
ecision-maker’s preferences. This can be done by properly
djusting the decisions associated with the SC design and
peration. Fig. 5 depicts two cumulative probability curves
ssociated with two  different SC topologies. Design A shows
ower probabilities of small and high NPVs, which would make
t appealing for risk-averse decision-makers. On the other
and, design B might be the preferred alternative for risk-
akers decision-makers, as it leads to larger probabilities of
igh NPVs at the expense of increasing as well the probability
f low benefits.

A widely used risk metric is the value at risk (VaR) that can
e defined as the difference between E[NPV] and the NPV value
orresponding to a certain level of risk. In this study, this level
s set to 5%. The symmetrically opposite measure of risk is the
pportunity value (OV) (discussed by Aseeri and Bagajewicz,
004), or upside potential that corresponds to the difference
etween the NPV at 95% risk and the expected value of NPV.
ig. 5 presents the calculation of VaR and OV for the afore-
entioned risk-averse and risk-taker cumulative probability

urves.

The main disadvantage of both VaR and OV measures is that

hey cannot represent the behavior of the entire risk curve.
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Fig. 5 – Value at risk (VaR) vs. opportunity value (OV).
Fig. 6 – Risk area ratio (RAR).

Aseeri and Bagajewicz (2004) also proposed the use of the
risk area ratio (RAR), which compares the areas between the
risk curves corresponding to the reference plan with better
E[NPV] and the alternative plan being evaluated. The proposed
metric is the ratio of the opportunity area (O-Area) enclosed
by the two curves above their intersection, to the risk area
(R-Area) enclosed by the two curves below their intersection
(see Fig. 6). The RAR is therefore mathematically defined as
follows:

RAR = O − Area
R − Area

(36)

Aseeri and Bagajewicz (2004) claim that a good risk-reduced
plan is one with a RAR as close to 1 as possible. Rather
than solving a multi-objective model that seeks to opti-
mize the aforementioned risk metrics, we  propose herein to
apply a method based on the sample average approxima-
tion algorithm (Verweij et al., 2003; Aseeri and Bagajewicz,
2004; Barbaro and Bagajewicz, 2004). As will be shown later
in the article, our approach allows for the identification of
SC configurations with different economic performance (mea-
sured according to the risk metrics mentioned above) in the
face of uncertainty. From these alternatives, decision-makers
should choose the best one according to their preferences. The
method is described in detail in the following section.

4.  Solution  method:  sample  average
approximation

The algorithm used to approximate the solution of the
stochastic problem entails the calculation of two models that
are solved in an iterative manner. A reduced-space stochastic
model defined for only one scenario is solved in first place.
This provides the values of the strategic and planning deci-
sion variables of the problem for that particular scenario. The
original stochastic problem (with all the scenarios included)
is then solved maximizing the expected NPV and fixing the
first stage variables to the values provided by the reduced-
space stochastic model. Hence, for each set of design variables
corresponding to the solution of the reduced-space stochastic
model defined for a specific scenario, we construct a risk curve.
This procedure is repeated until there are no more  scenarios
to be explored.
After solving the reduced-space stochastic model for all the
scenarios, we obtain a set of risk curves that are next filtered in
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Table 1 – Expected demand, ton/year.

Sub-region Product form

White sugar Raw sugar Ethanol

Córdoba 84,126 42,063 92,539
Mesopotamia 84,126 42,063 92,539
Buenos Aires 455,884 227,942 501,472
Cuyo 72,108 36,054 79,319
North 39,960 19,980 43,956
North West 47,872 23,936 52,659
Tucumán 37,156 18,578 40,871
Santa Fe 81,122 40,561 89,234
La Pampa 8,413 4,206 9,254
Santiago 21,733 10,866 23,906
West 18,327 9,164 20,160
Patagonia 49,174 24,587 54,091
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order to discard those that are dominated by at least another
one. One solution A is dominated by another solution B if its
probability curve lies entirely above that of B. Note that this
implies that for any probability level, A will always lead to
lower benefits than B. In other words, A will be better con-
sidering the whole range of probability levels. From the set of
non-dominated solutions, decision-makers should choose the
one that better fits his/her preferences.

The detailed steps of the algorithm are as follows:

1. Set counter ctr equal to 1.
2. Solve the stochastic model defined for the scenario whose

ordinality is equal to ctr.
3. Fix the first stage variables, and solve the stochastic model

with all the scenarios included maximizing the expected
NPV.

4. If ctr = |E| then go to step 5, otherwise make ctr = ctr + 1 and
go to step 2.

5. Filter the probability curves of the solutions obtained so far
by removing the curves dominated by at least another one.

6. End.

Note that the algorithm presented above has been used
successfully in a variety of applications to address opti-
mization problems under uncertainty (Whitnack et al., 2009;
Lakkhanawat and Bagajewicz, 2008; Lavaja et al., 2006;
Pongsakdi et al., 2006; Lavaja and Bagajewicz, 2005, 2004;
Guillén-Gosálbez et al., 2005, 2005, 2003; Aseeri et al., 2004;
Barbaro and Bagajewicz, 2004; Bonfill et al., 2004; Romero et al.,
2003; Bagajewicz and Barbaro, 2003; Koppol and Bagajewicz,
2003; Mele et al., 2003).

5. Case  study

We  illustrate the capabilities of the proposed approach
through a case study based on the sugarcane industry of
Argentina. The problem considers 12 sub-regions each one
with an associated demand of sugar and ethanol. We should
clarify that Argentina is in fact divided into 24 political
provinces, some of which have been merged to simplify
the calculations. The sub-region “Mesopotamia” comprises
the provinces of Corrientes, Misiones and Entre Ríos. The
province of Buenos Aires and Buenos Aires city have been
merged into the sub-region “Buenos Aires”. The sub-region

“Cuyo” includes the provinces of Mendoza, San Luis and San
Juan. The sub-region “Patagonia” includes the 5 southernmost

Ta
b

C
ór

M
es

B
u

e
C

u
y

N
or

N
or

Tu
c

Sa
n

La

 

P
Sa

n
W

es
Pa

ta



chemical engineering research and design 9 0 ( 2 0 1 2 ) 359–376 369

Table 3 – Sugarcane capacity, ton/year.

Sub-region Capacity

Mesopotamia 62,040
North West 6,392,000
Tucumán 12,220,000
Santa Fe 125,960
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Table 5 – Parameters used to evaluate the capital cost for
different production technologies.

˛PL
pgt, $ ˇPL

pgt, $ · year/ton

T1 5,350,000 535
T2 5,350,000 535
T3 7,710,000 771
T4 7,710,000 771
T5 9,070,000 907

Table 6 – Parameters used to evaluate the capital cost for
different storage technologies.

˛S
sgt, $ ˇS

sgt, $ · year/ton

S1 1,220,000 122

that the better performance shown by the risk-averse and
rovinces of Neuquén, Río Negro, Chubut, Santa Cruz and
ierra del Fuego. The provinces of Chaco and Formosa are
erged in the sub-region “North”, whereas Jujuy and Salta

re included in the region “North West”. The sub-region “West”
ncludes the provinces of Catamarca and La Rioja. The remain-
ng sub-regions correspond to the homonymous Argentinean
rovinces.

All these sub-regions along with the mean values of the
ssociated demand are shown in Table 1. The entire set of
emand values is provided as supplementary material. The
rices for white sugar, raw sugar and ethanol are equal to
S$537/ton, US$375/ton and US$860/ton, respectively. Dis-

ances between regions have been determined considering the
apitals of the corresponding provinces and the main roads
onnecting them. These data are listed in Table 2. We assume
hat each region has an associated sugarcane crop capacity.
articularly, sugarcane plantations are situated in only five
rgentinean provinces, whose production capacities are rep-

esented in Table 3. The length of the planning horizon is equal
o 3 years.

The upper bound on the capital investment is US$1.5 bil-
ion. The minimum and maximum production capacities of
ach technology are listed in Table 4. The minimum and
aximum storage capacities for liquid and solid materi-

ls are assumed to be 50 and 2 billion tons, respectively.
ixed and variable investment coefficients for different pro-
uction and storage modes are listed in Tables 5 and 6,
espectively. Unit production cost for sugar and ethanol are
qual to US$265/ton and US$317/ton, respectively. The unit
torage cost is US$0.365/(ton·year) for all types of materials.
he parameters used to calculate the capital and operat-

ng cost for different transportation modes can be found
n Table 7. The minimum flow rate of each transportation

ode is assumed to be equal to the minimum capac-
ty of the corresponding transportation mode, whereas the

aximum flow rates for heavy trucks, medium trucks and
anker trucks are 6.25, 6.25 and 6.00 million tons per year,
espectively.

The stochastic model with 100 scenarios was written in
AMS (Rosenthal, 2008) and solved with the MILP solver CPLEX
1.0 on a HP Compaq DC5850 desktop PC with an AMD  Phenom
600B, 2.29 GHz triple-core processor, and 2.75 Gb of RAM. Each
eterministic model was solved using the “rolling horizon”
trategy introduced in a previous work (Kostin et al., 2011).
pecifically, we solved two different case studies that differ

n the demand variability. These cases are described in detail

ext.

Table 4 – Minimum and maximum production capacities of eac

Technologies

T1 T2 

Minimum production capacity 30,000 30,000
Maximum production capacity 350,000 350,000
S2 18,940,000 1894

5.1. High  variance  in  ethanol  demand

In this first case, we  consider high and low variabilities for
ethanol and sugar demand, respectively. Both parameters are
assumed to follow normal distributions with a standard devi-
ation of 30% for ethanol and 5% for sugar.

The resulting non-dominant cumulative risk curves
obtained by applying our algorithm are shown in Fig. 7a.
Note that each of these curves represents a different SC con-
figuration and associated set of planning decisions for the
entire time horizon. As observed, the NPV values lie in the
interval US$249–616 million. In the figure, we  have identi-
fied different curves of interest for decision-makers. These
are the one with maximum E[NPV], the deterministic solution
(i.e., the one calculated with the deterministic formulation
solved for the mean demand), the upper bound risk curve and
two curves that may be appealing for risk-averse and risk-
takers decision-makers. Let us clarify that the upper bound
risk curve does not represent any particular SC configura-
tion. This curve is constructed by plotting the best NPV that
could be attained in each scenario (i.e., the NPV of the best SC
configuration for that particular scenario realization). Hence,
the upper bound curve represents the best performance that
a SC could exhibit in the face of uncertainty (Barbaro and
Bagajewicz, 2004).

As observed, the solutions behave in different ways in the
face of uncertainty. For instance, for the risk-taker solution,
the probability of not exceeding a target value of US$500 mil-
lion is equal to 77.23%, whereas this probability is gradually
decreased to 34.65%, 13.86% and 5.94%, in the determinis-
tic, risk-averse and maximum E[NPV] solutions, respectively.
The maximum E[NPV] solution is a rather conservative solu-
tion that behaves better than the remaining solutions for a
wide range of target values on the NPV. In fact, there are
only 3 solutions out of 72 with lower probabilities of small
target values than the maximum expected NPV one. Note
risk-taker solutions in the lower and upper parts of the prob-

h technology (ton of main product per year).

T3 T4 T5

 10,000 10,000 10,000
 300,000 300,000 300,000



370  chemical engineering research and design 9 0 ( 2 0 1 2 ) 359–376

Fig. 7 – (a) Cumulative probability curves for the case of high variance in ethanol demand. (b) Cumulative probability curves
for the case of high variance in sugar demand.
ability curves, respectively, is achieved at the expense of
a big drop in the expected NPV. Particularly, the risk-taker
and risk-averse SCs show expected NPVs of US$443,310,063,
and US$525,719,643, whereas the maximum expected NPV
is US$557,690,716. In between the risk-taker and risk-averse
solution, we can find many  SC alternatives behaving in dif-
ferent ways in the face of uncertainty. From these solutions,
decision-makers must choose the best one according to their
preferences.

Tables 8 and 9 present the structure of the SC associ-
ated with the deterministic solution. The design decisions
include the construction of 4 sugar mills utilizing tech-
nology T2, and 4 distilleries operating with technologies
T4 and T5. The production facilities are situated exclu-
sively at the sub-regions of Tucumán and the North West
region. 254 medium trucks for sugars and 157 tank trucks

for ethanol are purchased to transport the final products

Table 7 – Parameters used to calculate the capital and operating

Heavy tru

Average speed (km/h) 55 

Capacity (ton per trip) 65
Availability of transportation mode (h/d) 18 

Cost of establishing transportation mode (US$) 90,000 

Driver wage (US$/h) 10 

Fuel economy (km/L) 5 

Fuel price (US$/L) 0.85 

General expenses (US$/d) 8.22 

Load/unload time of product (h/trip) 6 

Maintenance expenses (US$/km) 0.0976 

Table 8 – Production capacity in the deterministic solution.

Technology Main product Number of plants Sub-regio

Deterministic solution: US$1,423,561,900 of capital investments
T2 White sugar 1 North Wes
T2 White sugar 3 Tucumán 

T4 Ethanol 1 North Wes
T4 Ethanol 1 Tucumán 

T5 Ethanol 1 North Wes
T5 Ethanol 1 Tucumán 
from Tucumán and the North West region to the remaining
sub-regions. The storages for solid materials (i.e., the ones
utilizing technology S1) are present in all sub-regions. Stor-
age facilities for ethanol (i.e., warehouses with technology S2),
exist only in 4 sub-regions with comparatively large ethanol
demand.

Tables 10,  11 and 12 summarize the SC configurations
of the risk-taker, risk-averse and maximum E[NPV] solu-
tions, respectively. As shown, the risk-taker configuration
shows larger production and transport capacities than the
risk-averse and maximum E[NPV] designs. On the other
hand, it leads to fewer storage facilities. The overall cap-
ital expenditures of the risk-averse network are lower
than those associated with the remaining solutions, mainly
because the extra investment in production plants and
transport units is compensated by the savings in storage

facilities.

 cost for different transportation modes.

ck Medium truck Tanker truck

60 65
25  28
18 18
65,000 100,000
10 10
5 5
0.85 0.85
8.22 8.22
6 6
0.0976 0.0976

n Capacity, ton of main
product/year

Total capacity of main
product, ton/year

t 171,958
828,042 1,000,000

t 38,498
185,383

t 272,922
230,116 726,918
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Note that the aforementioned capacities are first-stage
variables that limit the potential production rates and storage
inventories. According to the demand that finally materializes,
the SC can rearrange the materials flows in order to take full
advantage of the production and storage capacities. Hence,
larger production, transport and storage facilities make it eas-
ier to follow a given demand pattern.

Table 13 presents the risk metrics calculated for the dif-
ferent designs. As compared with the risk-taker design, the
risk-averse solution offers the maximum reduction in VaR
from a value of US$137M to US$53M (i.e., a 61.3% reduction).
As regards the OV, the greatest decrease in this measure can
be observed in the solution with the maximum E[NPV]. Partic-
ularly, it reduces the OV from a value of US$122M to US$21M
(i.e., a 83% reduction). In order to calculate the RAR, the risk-
taker solution has been chosen as the reference design. As
shown, all solution have values of RAR much less than 1,
and the corresponding cumulative risk curves are positioned
almost below the risk-taker one. The risk-averse solution has
the greatest value of RAR (equal to 0.3). This means that
for the risk-averse, maximum E[NPV] and deterministic solu-
tions the gain in risk reduction is higher than the loss in
opportunity.

Figs. 8a, 9a, 10a show the cumulative probability curves
of the demand satisfaction levels of white sugar, raw sugar
and ethanol, respectively. That is, for a given target on
the demand satisfaction level (x axis), these figures provide
the probability (y axis) of achieving a demand satisfaction
level less than or equal to that particular target. These curves
have been determined for each SC configuration from the sales
and demand of sugar and ethanol in each scenario realization.
The numbers on these plots show the expected values of the
corresponding cumulative probability distributions.

As observed, the curves for white and raw sugar demand
satisfaction are rather similar in all the cases (i.e., the expected
values do not differ in more  than 1.5%). This is because the
variability associated with the sugar demand is very low,
and all the SC configurations are capable of fulfilling it to
a large extent in all the scenarios. In contrast, the ethanol
demand satisfaction curves are rather different (expected val-
ues in the range 42.1% to 74.5%). The risk-taker SC attains
the lowest expected value of ethanol demand satisfaction.
This is due to the establishment of only two  ethanol stor-
ages that allow to cover the demand of only two regions
of the country. On the other hand, the design with maxi-
mum E[NPV] leads to the largest ethanol demand satisfaction
level. These curves shed light on the performance of each
SC configuration under uncertainty. Particularly, the maxi-
mum expected NPV solution shows better performance in a
wide range of NPV values due to the establishment of more
storage facilities that allow to fulfill the ethanol demand to
a larger extent. In contrast, the risk-taker solution invests
on fewer storage facilities in order to reduce the capital
cost. This leads to larger benefits in scenarios with low
demand, but also to poor NPVs when large demands are
materialized.

Comparing the solutions generated by the SAA with the
deterministic one, it is observed that there are 60 out of
72 SC configurations that yield better performance than the
deterministic design. Furthermore, the expected NPV in the
deterministic case is US$50,034,164 lower than that attained
by the maximum expected NPV solution identified by the SAA.
With regard to the shape of the risk curves, the deterministic
solution leads to a risk-averse probability curve.
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Table 10 – Production capacities for risk-taker, risk-averse and maximum E[NPV] solutions for the case of high variance
in ethanol demand.

Technology Main product Number of
plants

Sub-region Capacity, ton of main
product/year

Total capacity of main
product, ton/year

Risk-taker solution: US$1,388,582,700 of capital investments
T2 White sugar 1 North West 174,777
T2 White sugar 3 Tucumán 813,576 988,354

T4 Ethanol 1 North West 39,129
T4 Ethanol 1 Tucumán 182,144
T5 Ethanol 1 North West 271,275
T5 Ethanol 1 Tucumán 236,565 731,113

Risk-averse solution: US$1,498,569,200 of capital investments
T2 White sugar 1 North  West 286,477
T2 White sugar 2 Tucumán 700,000 986,477

T4 Ethanol 1 North West 64,137
T4 Ethanol 1 Tucumán 156,716
T5 Ethanol 1 North West 206,030
T5 Ethanol 1 Tucumán 300,000 726,883

Maximum E[NPV] solution: US$1,457,363,600 of capital investments
T2 White sugar 1 North West 282,176
T2 White sugar 2 Tucumán 700,000 982,176

T4 Ethanol 1 North West 63,174
T4 Ethanol 1 Tucumán 156,716
T5 Ethanol 1 North West 208,621
T5 Ethanol 1 Tucumán 300,000 728,511

Table 11 – Storage capacities for risk-taker, risk-averse and maximum E[NPV] solutions for the case of high variance in
ethanol demand, ton.

Type Córdoba Mesopotamia Buenos
Aires

Cuyo North North
West

Tucumán Santa
Fe

La
Pampa

Santiago West Patagonia Total

Risk-taker solution
S1 4838 5080 24,304 4388 2386 2876 2094 4566 465 1225 1027 2710 55,959
S2 0 4910 36,093 0 0 0 0 0 0 0 0 0 41,003

Risk-averse solution
S1 4686 4983 25,107 4058 2154 2816 2231 4551 495 1272 1072 2797 56,224
S2 6909 4754 12,605 5350 0 3970 2838 6032 0 0 0 4085 46,543

Maximum E[NPV] solution
S1 4537 4688 25,867 3867 2214 2707 2116 4717 487 1254 993 2848 56,295
S2 5776 5129 22,048 3582 0 3821 0 4250 0 0 0 0 44,605
5.2.  High  variance  in  sugar  demand

In this case, we  assume a standard deviation equal to 30% for
white and raw sugars demands and 5% for ethanol demand.
The resulting non-dominant cumulative risk curves are pre-
sented in Fig. 7b. As compared to the case of high variance in
ethanol demand, the resulting values of NPV under high vari-
ance in sugar demand show a narrower interval that goes from
US$301 to US$626 million. The risk of not exceeding the target

of $500 million in the risk-taker solution is equal to 52.48%. In

Table 12 – Number of transportation vehicles for
risk-taker, risk-averse and maximum E[NPV] solutions
for the case of high variance in ethanol demand.

Design Heavy truck Medium truck Tank truck

Risk-taker 0 248 187
Risk-averse 0 255 142
Maximal E[NPV] 0 257 151
the deterministic, the maximum E[NPV], and the risk-averse
solutions these probabilities are equal to 39.60%, 5.94%, 1.98%,
respectively. As happened previously, the solution with the
maximum E[NPV] behaves quite conservatively, and there are
only 12 out of 68 non-dominant solutions with lower probabil-
ities of small target values than the maximum expected NPV
one.

Tables 14,  15 and 16 present the resulting first-stage vari-
ables of the SC configurations obtained for the risk-taker,
risk-averse and maximum E[NPV] solutions. As observed, all
the networks involve highly centralized organizations with a
tendency to build the sugar mills and the distilleries in the sub-
regions with their own sugar cane plantations. Particulary, the
model decides to install production facilities only in the sub-
regions with large sugar cane capacities namely Tucumán and
North West.

Regarding storage, all the configurations have storages for
sugars. Thereby, the main factor causing different shapes and

slopes of the risk curves in the case of high variance in sugar
demand is the sugar production capacity. As shown, the risk-
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Fig. 8 – (a) Cumulative probability curves for white sugar demand satisfaction level under high variance in ethanol demand.
(b) Cumulative probability curves for white sugar demand satisfaction level under high variance in sugar demand.

Fig. 9 – (a) Cumulative probability curves for raw sugar demand satisfaction level under high variance in ethanol demand.
(b) Cumulative probability curves for raw sugar demand satisfaction level under high variance in sugar demand.

Fig. 10 – (a) Cumulative probability curves for ethanol demand satisfaction level under high variance in ethanol demand. (b)
Cumulative probability curves for ethanol demand satisfaction level under high variance in sugar demand.

Table 13 – Values of VaR, OV and RAR to risk-taker design for the selected solutions, US$.

Type of solution

Risk-taker Risk-averse Maximum E[NPV] Deterministic

High variance in ethanol demand
VaR 138,615,053 52,530,213 75,025,076 101,789,033
OV 121,911,937 32,622,837 20,945,374 62,400,497
RAR – 0.30 0.09 0.17

High variance in sugar demand
VaR 111,538,469 16,744,581 68,545,708 98,746,232
OV 65,834,581 12,203,389 23,312,212 47,085,358
RAR – 0.17 0.01 0.10



374  chemical engineering research and design 9 0 ( 2 0 1 2 ) 359–376

Table 14 – Production capacities for risk-taker, risk-averse and maximum E[NPV] solutions for the case of high variance
in white and raw sugars demand.

Technology Main product Number of
plants

Sub-region Capacity, ton of main
product/year

Total capacity of main
product, ton/year

Risk-taker solution: US$1,440,257,000 of capital investments
T2 White sugar 1 North West 204,605
T2 White sugar 3 Tucumán 886,013 1,090,618

T4 Ethanol 1 North West 45,807
T4 Ethanol 1 Tucumán 198,361
T5 Ethanol 1 North West 253,852
T5 Ethanol 1 Tucumán 196,254 694,275

Risk-averse solution: US$1,406,887,800 of capital investments
T2 White sugar 1 North West 301,103
T2 White sugar 1 Tucumán 350,000 651,103

T4 Ethanol 1 North West 67,411
T4 Ethanol 1 Tucumán 78,358
T5 Ethanol 1 North West 197,487
T5 Ethanol 2 Tucumán 509,346 852,602

Maximum E[NPV] solution: US$1,415,866,400 of capital investments
T2 White sugar 1 North West 232,327
T2 White sugar 2 Tucumán 700,000 932,327

T4 Ethanol 1 North West 52,013
T4 Ethanol 1 Tucumán 156,716
T5 Ethanol 1 North West 237,660
T5 Ethanol 1 Tucumán 300,000 746,390

Table 15 – Storage capacities for risk-taker, risk-averse and maximum E[NPV] solutions at the case of high variance in
white and raw sugars demand, ton.

Type Córdoba Mesopotamia Buenos
Aires

Cuyo North North
West

Tucumán Santa
Fe

La
Pampa

Santiago West Patagonia Total

Risk-taker solution
S1 7000 5803 28,314 6961 3179 3641 3067 6418 606 1107 1443 2088 69,628
S2 5159 5082 25,368 0 0 3069 0 0 0 0 0 0 38,678

Risk-averse solution
S1 6347 4426 10,677 6315 2379 3059 2509 6320 452 1538 1350 3167 48,539
S2 5127 5002 24,898 4208 0 3048 0 4972 0 0 0 0 47,254

Maximum E[NPV] solution
S1 5779 5401 58,772 4947 2528 9650 2636 4979 568 1444 1227 34,947 132,879
S2 5151 5065 26,786 0 0 0 0 5040 0 0 0 0 42,042

Table 16 – Number of transportation vehicles for
risk-taker, risk-averse and maximum E[NPV] solutions
for the case of high variance in sugar demand.

Design Heavy truck Medium truck Tank truck

Risk-taker 0 281 149
Risk-averse 0 162 175
Maximal E[NPV] 0 239 171
taker solution has the largest production capacity of white
and raw sugar and the lowest ethanol production capacity.
In contrast, the configuration from the risk-averse solution is
ethanol-oriented. The probability curves for white sugar, raw
sugar and ethanol demand satisfaction levels are shown in
Figs. 8b, 9b and 10b, respectively. As observed, the risk-taker
design attains the highest expected demand satisfaction of
white and raw sugar, whereas the risk-averse configuration
shows the largest ethanol demand satisfaction level.
Comparing the solutions generated by the SAA algorithm
with the deterministic one, we see that there are 60 out of
68 SC configurations that yield better performance than the
deterministic design. Furthermore, the expected NPV in the
deterministic case is US$57,474,176 lower than that attained
by the maximum expected NPV solution identified by the SAA.
Regarding the shape of the risk curves, the deterministic solu-
tion results in a risk-taker probability curve.

As regards the risk metrics, the risk-averse solution leads to
the largest decrease in both VaR and OV values (see Table 13).
Particularly, It reduces the value at risk from US$112M to
US$17M (85% reduction). The value of OV is decreased from
US$67M to US$12M (82% reduction). In addition, the risk area
for this solution is the largest one (i.e., 0.17).

6.  Conclusions

In this work, we have proposed a two-stage stochastic mixed-
integer linear programming approach for the optimal design
and planning of bioethanol SCs under uncertainty in product
demand. The problem was solved applying the SAA algo-

rithm, which provides as output a set of SC configurations that
behave in different ways in the face of uncertainty.
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A real case study based on the current Argentinean sugar
ane industry has been presented to show the capabilities of
ur approach. Since the final products of the sugar cane indus-
ry in Argentina are sugar and bioethanol, we  developed two
ifferent case studies that differ in the variance of the uncer-
ain sugar and ethanol demands. Numerical results show that
he centralized production is more  favorable. Furthermore, the
roduction facilities should be located close to the sugar cane
lantations. Among the technologies that convert sugar cane
o white and raw sugars the one producing honey as a by-
roduct is preferable. In addition, it is concluded that ethanol
hould be produced by fermentation of sugarcane juice or
oney from sugar mills.

We have shown that the SAA is able to provide solutions
hat behave better than the deterministic one in the face
f uncertainty (i.e., solutions yielding better expected NPV
han that associated with the deterministic one). The pro-
osed methodology offers different risk-related alternatives
or decision-making. The analysis of the stochastic results
eveals that there are two critical factors that influence the
C performance under uncertainty. The first one is the pro-
uction capacity. As a rule, risk-taker SC configurations imply
roduction facilities with larger capacities. The second one

s the amount of storages and transportation units. SCs with
arger number of warehouses and trucks provide more  flex-
bility to rearrange products flows, which makes it easier to
mplement risk-averse manufacturing policies. These con-
gurations, however, require larger capital investments and
herefore lead to lower profits. The tool presented in this work
s intended to help policy makers in the strategic planning of
nfrastructures for ethanol and sugar production in the face of
ncertainity.
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