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LINEAR PROGRAMMING (LP) IS one of the most widely used optimization tech- 
niques and perhaps the most effective. The term linear programming was coined by 
George Dantzig in 1947 to refer to problems in which both the objective function 
and the constraints are linear (Dantzig, 1998; Martin, 1999; Vanderbei, 1999). The 
word programming does not refer to computer programming, but means optimiza- 
tion. This is also true in the phrases "nonlinear programming," "integer program- 
ming," and so on. The following are examples of LP that occur in plant management: 

1. Assign employees to schedules so that the workforce is adequate each day of the 
week and worker satisfaction and productivity are as high as possible. 

2. Select products to manufacture in the upcoming period, taking best advantage' of 
existing resources and current prices to yield maximum profit. 

3. Find a pattern of distribution from plants to warehouses that will minimize costs 
within the capacity limitations. 

4. Submit bids on procurement contracts to take into account profit, competitors' 
bids, and operating constraints. 

When stated mathematically, each of these problems potentially involves many 
variables, many equations, and many inequalities. A solution must not only satisfy 
all of the constraints, but also must achieve an extremum of the objective function, 
such as maximizing profit or minimizing cost. With the aid of modern software 
you can formulate and solve LP problems with many thousands of variables and 
constraints. 

7.1 GEOMETRY OF LINEAR PROGRAMS 

Consider the problem 

Maximize: f = x ,  +. 3x2 ' 

Subject to: - X I  + xz 5 1 

XI + X2 5 2 

X ,  r 0, x2 2 o 
The feasible region lies within the unshaded area of Figure 7.1 defined by the inter- 
sections of the half spaces satisfying the linear inequalities. The numbered points 
are called extreme points, corner points, or vertices of this set. If the constraints are 
linear, only a finite number of vertices exist. 

Contours of constant value of the objective function f are defined by the linear 
equation - 

x l  + 3x2 = Constant = c (7.2) 

As c varies, the contour is moved parallel to itself. The maximum value off is the 
largest c for which the line has at least one point in common with the constraint set. 
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FIGURE 7.1 ' 

Geometry of a linear program. 

For Figure 7.1, this point occurs for c = 5, and the optimal values of x are x, = 0.5, 
x, = 1.5. Note that the maximum value occurs at a vertex of the constraint set. If 
the problem seeks to minirnizef, the minimum is at the origin, which is again a ver- 
tex. If the objective function were f = 2x1 + 2x2, the line f = Constant would be 
parallel to one of the constraint boundaries, x,  + x, = 2. In this case the maximum 
occurs at two extreme points, (x, = 0.5, x, = 1.5) and (x,  = 2, x, = 0) and, in fact, 
also occurs at all points on the, line segment joining these vertices. 

'ILvo additional cases can exist. First, if the constraint x,  + x, 5 2 had been 
removed, the feasible region would appear as in Figure 7.2, that is, the set would be 
unbounded. Then max f is also unbounded because f can be made as large as desired 
subject to the constraints. Second, at the opposite extreme, the constraint set could 
be empty, as in the case where x,  + x, 5 2 is replaced by x, + x2 5 - 1 .  Thus an 
LP problem may have (1) no solution, (2) an unbounded solution, (3) a single opti- 
mal solution, or (4) an infinite number of optimal solutions. The methods to be 
developed deal with all these possibilities. 

The fact that the extremum of a linear program always occurs at a vertex of the 
feasible region is the single most important property of linear programs. It is true 
for any number of variables (i.e., more than two dimensions) and forms the basis 
for the simplex method for solving linear programs (not to be confused with the 
simplex method discussed in Section 6.1.4). 

Of course, for many variables the geometrical ideas used here cannot be visu- 
alized, and therefore the extreme points must be characterized algebraically. This is 
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FIGURE 7.2 
Unbounded minimum. 

done in the next two sections, in which the problem is placed in standard form and 
the basic results of linear programming are stated. 

Standard form for linear programs 
An LP problem can always be written in the following form. Choose x = (x,, 

x,, . . . , xn) to minimize 

n 

Subject to: a,x, = b ,  i 1,2, . . . ,m 
j= 1 

(7.4) 

1. I x .  I u,, j = 1, . . . ,n J J (7.5) 

where cj are the n objective function coefficients, a, and bi are parameters in the m 
linear equality constraints, and i, and u, are lower and upper bounds with I, 5 uj. 
Both i, and u, may be positive or negative. In matrix form, this problem is 

Minimize: f = cx (7-6) 

Subject to: Ax = b 

a n d l l x l u  

A is an m X n matrix whose (i, j) element is the constraint coefficient a,, and c, b, . 

1, u are vectors whose components are c,, b,, i,,.uj, respectively. If any of the Equa- 
tions (7.7) were redundant, that is, linear combinations of the others, they could be 
deleted without changing any solutions of the system. If there is no solution, or if 
there is only one solution for Equation (7.7), there can be no optimization. Thus the 
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case of greatest interest is where the system of equations (7.7) has more unknowns 
than equations and has at least two and potentially an infinite number of solutions. 
This occurs if and only if 

and 

We assume these conditions are true in what follows. The problem of linear pro- 
gramming is to first detect whether solutions exist, and, if so, to find one yielding 
the minimum f. 

Note that all the constraints in Equation (7.4) are equalities. It is necessary to 
place the problem in this form to solve it most easily (equations are easier to work 
with here than inequalities). If the original system is not of this form, it may easily 
be transformed by use of so-called slack variables. If a given constraint is an 
inequality, for example, 

then define a slack variable x,+~ 2 0 such that 

and the inequality becomes an equality. Similarly, if the inequality is 

we write 

Note that the slacks must be nonnegative to guarantee that the inequalities are sat- 
isfied. 

EXAMPLE 7.1 STANDARD LP FORM 

Transform the following linear program into standard form: 

Minimize: f = x,  + x2 

Subject to: 2x1 + 3x2 5 6 

X I  + 7x2 1 4 

x ,  + X2 = 3 

x ,  2 0, x2 unconstrained in sign 
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Solution. Define slack variables x3 r 0, x4 2 0. Then the problem becomes 

Minimize: f = x1 + x2 

Subject to: 2x1 + 3x2 + x3 = 6 

XI + 7x2 - X 4  = 4  

x1 + x2 = 3 
X, r 0, x3 2 0, x4 2 o 

In the rest of this chapter, we assume that the rows of the constraint matrix A are 
linearly independent, that is, rank (A) = m. If a slack variable is inserted in every row, 
then A contains a submatrix that is the identity matrix. In the preceding example, if 
we insert a slack variable x, into the equality: 

then the rows of A are independent. Modern LP solvers automatically transform prob- 
lems in this way. 

7.2 BASIC LINEAR PROGRAMMING DEFINITIONS AND RESULTS 

We now generalize the ideas illustrated earlier from 2 to n dimensions. Proofs of 
the following theorems may be found in Dantzig (1963). First a number of standard 
definitions are given. 

DEFINITION 1. A feasible solution to the linear programming problem is a vec- 
tor x = (x , ,  x,, . . . , x,) that satisfies Equations (7.7) and the bounds (7.8). 

DEFINITroN 2. A basis matrix is an m X rn nonsingular matrix formed fi-om 
some m columns of the constraint matrix A (Note: Because rank (A)  = m, A con- 
tains at least one basis matrix). 

DEFINITION 3. A basic solution to a linear program is the unique vector deter- 
mined by choosing a basis matrix, setting each of the n - m variables associated 
with columns of A not in the basis matrix equal to either I ,  or uj? and solving the 
resulting square, nonsingular system of equations for the remaining m variables. 

DEFINITION 4. A basic feasible solution is a basic solution in which all vari- 
ables satisfy their bounds (7.8). 

DEFINITION 5. A nondegenerate basic feasible solution is a basic feasible solution 
in which all basic variables xj are strictly between their bounds, that is, I ,  < xj < uj. 

DEFINITION 6. An optimal solution is a feasible solution that also minimizes f 
in Equation (7.6). 
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For example, in the system 

obtained from Equation (7.1) by adding slack variables x3 and x4, the matrix 

formed from columns 3 and 4 of the equations in (7.9) is nonsingular and hence is 
a basis matrix. The corresponding basic solution of (7.9) 

is a nondegenerate basic feasible solution. The matrix 

formed from columns 1 and 4 of Equation (7.9) is also a basis matrix. The corre- 
sponding basic solution is obtained by setting x2 = x, = 0 and solving 

yielding x, = - 1, x4 = 3. This basic solution is ,not feasible. 
The importance of these definitions is brought out'by the following results: 

RESULT 1. The objective function f assumes its minimum at a vertex of the fea- 
sible region. If it assumes its minimum at more than one vertex, then it takes on the 
same value at every point of the line segment joining any two optimal vertices. 

This theorem is a multidimensional generalization of the geometric arguments 
given previously. By result 1, in searching for a solution, we need only look at ver- 
tices. It is thus of interest to know how to characterize vertices in many dimensions 
algebraically. This information is given by the next result. 

RESULT 2. A vector x = (x,, . . . ,x,) is a vertex of the constraint set of an LP 
problem if and only if x is a basic feasible solution of the constraints (7.7)-(7.8). 

Result 2 is true in two dimensions as can be seen from the example of relations 
(7.1), whose constraints have been rewritten in equation form in (7.9). The (x,, x,) 
coordinates of the vertex at x, = 0, x, = 1 are given by the (x,, x,) coordinates of 
the basic feasible solution 

The optimal vertex corresponds to the basic feasible solution 
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An alternative definition of a vertex provides geometric insight and generalizes 
easily to nonlinear problems. Refer again to Figure 7.1. There are two variables, 
and each vertex is at the intersection of two active constraints. If there were three 
variables, active constraints would correspond to planes, and vertices would be 
determined by the intersection of at least three active constraints. For n variables, 
at least n hyperplanes must interact to define a point. We say "at least," because it 
is possible that more than n hyperplanes pass through a vertex. One can always 
draw other redundant constraints through the vertices in Figure 7.1. 

We can state these ideas precisely as follows. Consider any optimization prob- 
lem with n variables, let x be any feasible point, and let na,,(x) be the number of 
active constraints at x. Recall that a constraint is active at x if it holds as an equal- 
ity there. Hence equality constraints are active at any feasible point, but an inequal- 
ity constraint may be active or inactive. Remember to include simple upper or lower 
bounds on the variables when counting active constraints. We define the number of 
degrees of freedom (dof) at x as 

DEFINITION: A feasible point x is called a vertex if dof(x) 5 0 and the coeffi- 
cient matrix of the active constraints at x has rank n. It is a nondegenerate vertex if 
dof(x) = 0, and a degenerate vertex if dof(x) < 0, in which case abs[dof(x)] is 
called the degree of degeneracy at x. 

Comparing this definition with the previous one (x is a vertex if and only if it 
is a basic feasible solution), if x is a basic feasible solution, then n - m nonbasic 
bounds are active, plus m equalities, so 

and dof(x) 5 0. If k basic variables are at their bounds, n,, (x) = n + k, and x is a 
degenerate vertex with degree of degeneracy k. It is straightforward to show that the 
active constraint matrix has rank n. One can reverse the argument, showing the def- 
initions are equivalent. 

In nonlinear programming problems, optimal solutions need not occur at ver- 
tices and can occur at points with positive degrees of freedom. It is possible to have 
no active constraints at a solution, for example in unconstrained problems. We con- 
sider nonlinear problems with constraints in Chapter 8. 

Results 1 and 2 imply that, in searching for an optimal solution, we need only 
consider vertices, hence only basic feasible solutions. Because a basic feasible 
solution has m basic variables, an upper bound to the number of basic feasible 
solutions is the number of ways m variables can be selected from a group of n vari- 
ables, which is 

n ! 
(n  - m ) !  m! 

For large n and m this is a very large number. Thus, for large problems, it is impossi- 
ble to evaluate f at all vertices to find the minimum. What is needed is a computational 
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scheme that selects, in an orderly fashion, a sequence of vertices, each one yield- 
ing a lower value off, until finally the minimum is attained. In this way we con- 
sider only a small subset of the vertices. The simplex method, devised by G. B. 
Dantzig, is such a scheme. This procedure finds a vertex and determines whether it 
is optimal. If not, it finds a neighboring vertex at which the value off is less than 
or equal to the previous value. The process is iterated and in a finite number of steps 
(usually between m and 2m) the minimum is found. The simplex method also dis- 
covers whether the problem has no finite minimal solution (i.e., min f = -00) or if 
it has no feasible solutions (i.e., an empty constraint set). It is a powerful scheme 
for solving any linear programming problem. 

To explain the method, it is necessary to know how to go from one basic fea- 
sible solution (BFS) to another, how to identify an optimal BFS, and how to find a 
better BFS from a BFS that is not optimal. We consider these questions in the fol- 
lowing two sections. The notation and approach used is that of Dantzig (1998). 

Systems of linear equations and equivalent systems 
Consider the system of m linear equations in n unknowns 

A solution to this system is any set of variables x, . . . xn.that simultaneously satis- 
fies all equations. The set of all solutions to the system is called its solution set. The 
system may have one, many, or no solutions. If there is no solution, the equations 
are said to be inconsistent, and their solution set is empty. 

- 

Equivalent systems and elementary operations 
Two systems of equations are said to be equivalent if they have the same solu- 

tion sets. Dantzig (1998) proved that the following operations transform a given lin- 
ear system into an equivalent system: 

1. Multiplying any equation Ei by a constant q # 0 
2. Replacing any equation E, by the equation E, + qEi, where Ei is any other equa- 

tion of the system 

These operations are called elementary row operations. For example, the linear 
system of Equations (7.9) 
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may be transformed into an equivalent system by multiplying the first equation by 
- 1 and adding it to the second, yielding 

Note that the solution x, = 0, x, = 0, x, = 1, x, = 2 is a solution of both sys- 
tems. In fact, any solution of one system is a solution of the other. 

Pivoting 
A particular sequence of elementary row operations finds special application in 

linear programming. This sequence is called a pivot operation, defined as follows. 

DEFINITION. A pivot operation consists of m elementary operations that replace a 
linear system by an equivalent system in which a specified variable has a coefficient 
of unity in one equation and zero elsewhere. The detailed steps are as follows: 

1. Select a term args, in row (equation) r, column (variable) s, with a, f 0 called 
the pivot term. 

2. Replace the rth equation E, by the rth equation multiplied by lla,. 
3. For each i = 1,2, . . . , m except i = r, replace the ith equation Ei by Ei - ais/ar$Zr, 

that is, by the sum of Ei 'and the replaced rth equation multiplied by -a,. 

- - - - - - - -  - - 

EXAMPLE 7.2 USE OF PIVOT OPERATIONS 

Consider the system 

Transform the set of equations to an equivalent system in which x,  is eliminated from 
all but Equation (a), but having a unity coefficient in Equation (a). 

Solution. Choose the term 2x, as the pivot term. The first operation is to make the 
coefficient of this term unity, so we divide Equation (a) by 2, yielding the equivalent 
system 



232 PART I1 : Optimization Theory and Methods 

The next operation eliminates x, from Equation (b) by multiplying (a') by - 1 and 
adding the result to Equation (b), yielding 

Finally, we eliminate x, from Equation (c) by multiplying (a') by -3 and adding the 
result to Equation (c), yielding 

x, + 1 . 5 ~ ~  - 2X3 + 0 . 5 ~ ~  = 0.5 (a ') 

- 2 . 5 ~ ~  + 2x3 + 4 . 5 ~ ~  = 5.5 (b') 

3 . 5 ~ ~  + 7x3 - 1 . 5 ~ ~  = 0.5 (c') 

Canonical systems 
In the following discussion we assume that, in the system of Equations 

(7.6)-(7.8), all lower bounds Z,. = 0, and all upper bounds uj = +a, that is, that the 
bounds become x 2 0. This simplifies the exposition. The simplex method is read- 
ily extended to general bounds [see Dantzig (1998)l. Assume that the first rn 
columns of the linear system (7.7) form a basis matrix B. Multiplying each column 
of (7.7) by B-I yields a transformed (but equivalent) system in which the coeffi- 
cients of the variables (x,, . . . , xm) are an identity matrix. Such a system is called 
canonical and has the form shown in Table 7.1. 

The variables x,, . . . , xm are associated with the columns of B and are called 
basic variables. They are also called dependent, becau'se if values are assigned to 
the nonbasic, or independent variables, xm+,, . . . , xn? then x,, . . . , xm can be deter- 
mined immediately. In particular, if xm+ ,, . . . , xn are all assigned zero values then 
we obtain the basic solution 

TABLE 7.1 
Canonical system with basic variables x,, x,, . . . , x, 

Dependent 
(basic) 
variables Independent (nonbasic) variables Constants 
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then this is a basic feasible solution. If one or more bi = 0,  the basic feasible solu- 
tion is degenerate. 

Instead of actually computing B-I and multiplying the linear system (7.7) by 
it, we can place Equation (7.7) in canonical form by a sequence of m pivot opera- 
tions. First pivot on the term allxl if all # 0. If all = 0, there exists an element in 
its first row that is nonzero, since B is nonsingular. Rearranging the columns makes 
this the (1, 1) element and allows the pivot. Repeating this procedure for the terms 
a2,x2, . . . , a m d m  generates the canonical form. Such a form will be used to begin 
the simplex algorithm. 

7.3 SIMPLEX ALGORITHM 

The simplex method is a two-phase procedure for finding an optimal solution to LP 
problems. Phase 1 finds an initial basic feasible solution if one exists or gives the 
information that one does not exist (in which case the constraints are inconsistent 
and the problem has no solution). Phase 2 uses this solution as a starting point and 
either (1) finds a minimizing solution or (2) yields the information that the minimum 
is unbounded (i.e., -m). Both phases use the simplex algorithm described here. 

In initiating the simplex algorithm, we treat the objective function 

as just another equation, that is, 

which we include in the set to form an augmented system of equations. The sim- 
plex algorithm is always initiated with this augmented system in canonical form. 
The basic variables are some m of the x's, which we renumber to make the first m, 
that is, x1 . . . xm and -f. The problem can then be stated as follows. 

Find values of x1 r 0, x2 r 0, . . . , x, 2 0 and rnin f satisfying 
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In this canonical form the basic solution is 

We assume that this basic solution is feasible, that is, 

The workings of phases 1 and 2 guarantee that this assumption is always satisfied. 
If Equation (7.14) holds, we say that the linear programming problem is in feasible 
canonical form. 

Test for optimality 
If the problem is in feasible canonical form, we have a vertex directly at hand, 

represented by the basic feasible solution (7.13). But the form provides even more 
valuable information. By merely glancing at the numbers Fj, j = rn + 1, . . . , n, 
you can tell if this extreme point is optimal and, if not, you can move to a better 
one. Consider first the optimality test, given by the following result. 

\ 

RESULT 3. A basic feasible solution is a minimal feasible solution with total - - 
cost 5 if all constants 2, + ,, c, + ,, . . . , c, are nonnegative, that is, if 

The 5 are called reduced costs. 

The proof of this result involves writing the previous equation as 
- 

f = f + cm+lx,+l + ... + c,x, 

Because the variables x,,, . . . x, are presently zero and are constrained to be 
nonnegative, the only way any one of them can change is for it to become positive. 
But if 2, 2 0 for j = rn + 1, . . . , n, then increasing any xj cannot decrease the 
objective function f because then Fjxj 2 0. Because no feasible change in the non- 
basic variables can cause f to decrease, the present solution must be optimal. 

The reduced costs also indicate if there are multiple optima. Let all Zj 2 0 
and let 7, = 0 for some nonbasic variable x,. Then, if the constraints allow that 
variable to be made positive, no change in f results, and there are multiple optima. 
It is possible, however, that the variable may not be allowed by the constraints to 
become positive; this may occur in the case of degenerate solutions. We consider 
the effects of degeneracy later. A corollary to these results is the following: 

- 
RESULT 4. A basic feasible solution is the unique minimal feasible solution if 

cj > 0 for all nonbasic variables. 
Of course, if some Zj < 0 then f can be decreased by increasing the corre- 

sponding xj, SO the present solution is probably nonoptimal. Thus we must consider 
means of improving a nonoptimal solution. 
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Consider the problem of minimizing f, where 

We show how the canonical form can be used to improve a nonoptimal basic feasi- 
ble solution. 

Assume that we know that x,, x,, -f can be used as basic variables and that the 
basic solution will be feasible. We can thus reduce system (7.16) to feasible canon- 
ical form by pivoting successively on the terms x5 (first equation) and x, (second 
equation) (-f already appears in the correct way). This yields 

The circled term will be explained soon. The basic feasible solution is 

Note that an arbitrary pair of variables does not necessarily yield a basic solution 
to Equation (7.16) that is feasible. For example, had the variables x, and x, been 
chosen as basic variables, the basic solution would have been 

which is not feasible, because x, and x2 are negative. 
For the original basic feasible solution, one reduced cost is negative, namely - 

c3 = -24. The optimality test of relations (7.15) thus fails. Furthermore, if x, is 
increased from its present value of zero (with all other nonbasic variables remain- 
ing zero), f must decrease because, by the third equation of (7.18), f is then related 
to x, by 

How large should x, become? It is reasonable to make it as large as possible, 
because the larger the value of x,, the smaller the value off. The constraints place 
a limit on the maximum value x, can attain, however. Note that, if x2 = x4 = 0, rela- 
tions (7.18) state that the basic variables x,, x5 are related to x, by 

X'j = 5 - 3x3 
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Thus as x3 increases, x, and x, decrease, and they cannot be allowed to become neg- 
ative. In fact, as x3 reaches 1.5, x, becomes 0 and as x3 reaches 1.667, x, becomes 
0. By that time, however, x, is already negative, so the largest value x3 can attain is 

Substituting this value into Equations (7.21) and (7.22) yields a new basic fea- 
sible solution with lower cost: 

This solution reduces f from 28 to - 8. The immediate objective is to see if it is opti- 
mal. This can be done if the system can be placed into feasible canonical form with 
x,, x,, -f as basic variables. That is, x, must replace x, as a basic variable. One rea- 
son that the simplex method is efficient is that this replacement can be accom- . 

plished by doing one pivot transformation. 
Previously x, had a coefficient of unity in the second equation of (7.18) and 

zero elsewhere. We now wish x, to have this property, and this can be accomplished 
by pivoting on the term 2x3, circled in the second equation of (7.18). This causes x, 
to become basic and x, to become nonbasic, as is seen here: 

This gives the basic feasible solution (7.24), as predicted. It also indicates that the 
present solution although better, is still not optimal, because Z2, the coefficient of 
x2 in the f equation, is - 1. Thus we can again obtain a better solution by increas- 
ing x2 while keeping all other nonbasic variables at zero. From Equation (7.25), the 
current basic variables are then related to x2 by 

f = - 8 -  x2 

Note that the second equation places no bound on the increase of x2, but the first 
equation restricts x, to a maximum of 0.5 1 0.875 = 0.57 1, which reduces x, to zero. 
As before, we obtain a new feasible canonical form by pivoting, this time using 
0 . 8 7 5 ~ ~  in the first equation of (7.25) as the pivot term. This yields the system 
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and the basic feasible solution 

Because all reduced costs for the nonbasic variables are positive, this solution is the 
unique minimal solution of the problem, by the corollary of the previous section. 
The optimum has been reached in two iterations. 

Degeneracy 
In the original system (7.18), if the constant on the right-hand side of the sec- 

ond equation had been zero, that is, if the basic feasible solution had been degen- 
erate, then x,  would have been related to x, by 

And any positive change in x, would have caused x, to become negative. Thus x, 
would be forced to remain zero and f could not decrease. We go through the pivot 
transformation anyway and attain a new form in which the degeneracy may not be 
limiting. This can easily occur, for if relation (7.29) had been 

then x, could be made positive. 

Unboundedness 
If relations (7.26) had been 

then x, could be made as large as desired without causing x, and x, to become neg- 
ative, and f could be made as small as desired. This indicates an unbounded solu- . 
tion. Note that it occurs whenever all coefficients in a column with negative Zj are 
also negative (or zero). 

Improving a nonoptimal basic feasible solution in general 

- 
Let us now formalize the procedures of the previous section. If at least one 

cj < 0, then, at least if we assume nondegeneracy (all b, > 0 ), it is always pos- 
sible to construct, by pivoting, another basic feasible solution with lower cost. If 
more than one Zj  < 0, the variable xs to be increased can be the one with the most 
negative Zj; that is, the one whose relative cost factor is 
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Although this may not lead to the greatest decrease in f (because it may not be pos- 
sible to increase x, very far), this is intuitively at least a good rule for choosing the 
variable to become basic. More sophisticated "pricing" schemes have been devel- 
oped, however, that perform much better and are included in most modern LP 
solvers [see Bixby, 19921. An important recent innovation is the development of 
steepest edge pricing [see Forrest and Goldfarb (1992)l. 

Having decided on the variable x, to become basic, we increase it from zero, 
.holding all other nonbasic variables zero, and observe the effects -on the current 
basic variables. By Equation (7.12), these are related to xs by 

Increasing xs decreasesf, and the only factor limiting the decrease is that one of the 
variables x1 . . . x, can become negative. However, if 

then xs can be made as large as desired. Thus we have 'the following result. 

RESULT 5 (UNBOUNDEDNESS). If, in the canonical system for some s, all coeffi- 
cients a, are nonpositive and Fs  is negative, then a class of feasible solutions can 
be constructed for which the set off values has no lower bound. 

The class of solutions yielding unbounded f is the set 

with x, any positive number and all other xi = 0. If, however, at least one Zis is pos- 
itive, then xs cannot be increased indefinitely because eventually some basic vari- 
able becomes first zero, then negative. From Equation (7.3 I), xi becomes zero when 
Zis > 0 and when x, attains the value 

The first xi to become negative is the xi that requires the smallest xs to drive it to 
zero. This value of xs is the greatest value for xs permitted by the nonnegativity con- 
straints and is given by 
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The basic variable x, then becomes nonbasic, to be replaced by xs. We saw from the 
example in Equations (7.16)-(7.28) that a new canonical form with xs replacing x, 
as a basic variable is easily obtained by pivoting on the term Z,J , .  Note that the 
previous operations may be viewed as simply locating that pivot term. Finding 
- 
c s  = rnin Z j  < 0 indicates that the pivot term was in column s, and finding that 

the minimum of the ratios ii/iiis for Z i s  > 0 occurred for i = r indicates that it 
was in row r. 

As seen in the example, if the basic solution is degenerate, then the given 
by Equation (7.35) may be zero. In particular, if some bi = 0 and the correspon- 
ding Z i s  > 0 then, by Equation (7.35), $ = 0. In this case the pivot operation is 
still carried out, but f is unchanged. 

Iterative procedure 
The procedure of the previous section provides a means of going from one basic 

feasible solution to one whose f is at least equal to the previous f (as can occur, in 
the degenerate case) or lower, if there is no degeneracy. This procedure is repeated 
until (1) the optimality test of relations (7.15) is passed or (2) information is pro- 
vided that the solution is unbounded, leading to the main convergence result. 

RESULT 6. Assuming nondegeneracy at each iteration, the simplex algorithm 
terminates in a finite number of iterations. 

Because the number of basic feasible solutions is finite, the algorithm can fail 
to terminate only if a basic feasible solution is repeated. Such repetition implies that 
the same value off is also repeated. Under nondegeneracy, however, each value of 
f is lower than the previous, so no repetition can occur, and the algorithm is finite. 

Degenerate case 
If, at some iteration, the basic feasible solution is degenerate, the possibility 

exists that f can remain constant for some number of subsequent iterations. It is then 
possible for a given set of basic variables to be repeated. An endless loop is then set 
up, the optimum is never attained, and the simplex algorithm is said to have cycled. 
Examples of cycling have been constructed [see Dantzig (1998), Chapter 101. 

Some procedures are guaranteed to avoid cycling (Dantzig, 1998). Modern LP 
solvers contain very effective antidegeneracy strategies, although most are not 
guaranteed to avoid cycling. In practice, almost all LPs have degenerate optimal 
solutions. A high degree of degeneracy (i.e., a high percentage of basic variables at 
bounds) can Blow the simplex method down considerably. Fortunately, an alterna- 
tive class of LP algorithms, called barrier methods, are not affected by degeneracy. 
We discuss these briefly later in the chapter. 

Two phases of the simplex method 
The simplex algorithm requires a basic feasible solution as a starting point. Such 

a starting point is not always easy to find and, in fact, none exists if the constraints 
are inconsistent. Phase 1 of the simplex method finds an initial basic feasible solution 
or yields the information that none exists. Phase 2 then proceeds from this starting 
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point to an optimal solution or yields the information that the solution is unbounded. 
Both phases use the simplex algorithm of the previous section. 

Phase 1. Phase 1 starts with some initial basis B and an initial basic (possibly 
infeasible) solution (x,, xN) satisfying 

In the previous expression, all components of xN are at bounds and N is the corre- 
sponding matrix of coefficients for x,. Because B is nonsingular 

If x, is between its bounds, the basic solution is feasible and we begin phase 2, 
which optimizes the true objective. Otherwise, some components of xB violate their 
bounds. Let L and U be the sets of indices of basic variables that violate their 
bounds, that is 

and 

Phase 1 minimizes the following linear objective function, the sum of infeasibili- 
ties, sin8 

sinf = 2 (1, - x,) + 2 (3 - u,) 
,EL j~ U 

Note that each term is positive, and that sinf = 0 if and only if the basic solution is 
feasible. When minimizing sin5 the standard simplex algorithm is applied, but the 
rules for choosing the pivot row described earlier must be changed, because some 
basic variables are now infeasible. During this process, infeasible basic variables 
can satisfy their bounds and feasible ones can violate their bounds, so the index sets 
L and U (and hence the function sinf) can change at any iteration. If the simplex 
optimality test is met and sinf > 0, then the LP is infeasible. Otherwise, when sinf 
= 0, phase 2 begins using the simplex method discussed earlier. 

The initial basis 
Often a good initial basis is known. Once an LP model is constructed and val- 

idated, it is common to do several series of case studies. In each case study, a set of 
LP data elements (cost or right-hand side components, bounds, or matrix elements 
aq) are assigned a sequence of closely related sets of values. For example, one may 
vary several costs through a range of values or equipment capacities or customer 
demands (both of the last two are right-hand sides or bounds). If there are several 
sets of parameter values, after the first set is solved, the optimal basis is stored and 
used as the initial basis for the LP problem that uses the second set, and so on. This 
usually sharply reduces computation time compared with a cold start, where no 
good initial basis is known. In fact, the simplex method's ability to warm start 
effectively is one of its major advantages over barrier methods (discussed later). 
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EXAMPLE 7.3 ITERATIVE SOLUTION OF AN LP PROBLEM 

Consider first the problem illustrated geometrically in Figure 7.1 given in relations 
(7.1), that is 

Maximize: f = xl + 3x2 

Subject to: -x ,  + x2 + x3 = 1 

where x,, x4 are slack variables. Solve for the maximum using the simplex method. 

Solution. Here no phase 1 is needed because an initial basic feasible solution is obvi- 
ous. To apply directly the results of the previous sections, we rephrase the problem as 

Minimize: -x l  - 3x2 

subject to Equation (a).  The initial feasible canonical form is 

- X I  + x + Xg 0 = 1 

X l  + x2 + x4 = 2 

- X I  - 3x2 -f = o  
The initial basic feasible solution is 

This corresponds to vertex (2) of Figure 7.1. 

Iteration 1. Because F2 = min(Zl, C 2 )  = - 3  < 0, x2 becomes basic. To see 
which variable becomes nonbasic, we compute the ratios bi /a i2;  for all i such that 
Z ,, > 0. This gives 

- 
The minimum of these is b l /2  12; thus the basic variable with unity coefficient in row 
1, x,, leaves the basis. The pivot term is a,,x2 that is, the x2 term circled in Equation 
(b). Pivoting on this term yields 

Iteration 2. The new basic feasible solution is 
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Note that f is reduced. The solution corresponds to vertex (3) of Figure 7.1. Because - 
c, = -4 = minjFj, x ,  becomes basic. The only ratio bi/iiil having Z i l  > 0 is 

that for i = 2; thus x4 becomes nonbasic and the circled pivot term is Z21xl = 2x1.  
Pivoting yields 

with basic feasible solution 

which corresponds to vertex (4) of Figure 7.1. This is optimal, since all F j  > 0. The 
path taken by the method is vertices (2), (3), (4). 

7.4 BARRIER METHODS 

Barrier methods for linear programming were first proposed in the 1980s and are 
now included in most commercial LP software systems. Their underlying princi- 
ples and the way they operate are very different from the simplex method. They 
generate a sequence of points that may not satisfy all the constraints until the 
method converges and none of the points need be extreme points. This allows them 
to cut across the feasible region rather than moving from one extreme point to 
another, as the simplex method does. Hence they usually take far fewer iterations, 
than the simplex method, but each iteration takes more time. See Martin (1999), 
Vanderbei (1999), or Wright (1999) for complete explanations. Current implemen- 
tations of barrier methods are competitive with the best simplex codes, are often 
faster on very large problems, and often do very well in problems where the sim- 
plex method is slowed by degeneracy. 

7.5 SENSITIVITY ANALYSIS 

In addition to providing optimal x values, both simplex and barrier solvers provide 
values of dual variables or Lagrange multipliers for each constraint. We discuss 
Lagrange multipliers at some length in Chapter 8, and the conclusions reached 
there, valid for nonlinear problems, must hold for linear programs as well. In Chap- 
ter 8 we show that the dual variable for a constraint is equal to the derivative of the 
optimal objective value with respect to the constraint limit or right-hand side. We 
illustrate this with examples in Section 7.8. 
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7.6 LINEAR MIXED INTEGER PROGRAMS 

A mixed integer linear program (MILP) is an LP in which one or more of the deci- 
sion variables must be integers. A common subset of MILPs are binary, in which 
the integer variables can be either 0 or 1, indicating that something is either done 
or not done. For example, the binary variable xj = l(0) can mean that a facility is 
(is not) placed at location j, or project j is (is not) selected. For such yes-no vari- 
ables, fractional values have no significance. Almost all LP solvers now include the 
capability to solve MILPs, and this dramatically increases their usefulness. The 
computational difficulty of solving MILPs is determined mainly by the number of 
integer variables, and only in a secondary way by the number of continuous vari- 
ables or constraints. Currently the best MILP solvers can handle hundreds of inte- 
ger variables in reasonable time, sometimes more, depending on the problem struc- 
ture and data. We discuss MILP's further in Chapter 9 [see also Martin (1999) and 
Wolsey (1998)l. 

7.7 LP SOFTWARE 

LP software includes two related but fundamentally different kinds of programs. 
The first is solver software, which takes data specifying an LP or MILP as input, 
solves it, and returns the results. Solver software may contain one or more algo- 
rithms (simplex and interior point LP solvers and branch-and-bound methods for 
MILPs, which call an LP solver many times). Some LP solvers also include facili- 
ties for solving some types of nonlinear problems, usually quadratic programming 
problems (quadratic objective function, linear constraints; see Section 8.3), or sep- 
arable nonlinear problems, in which the objective or some constraint functions are 
a sum of nonlinear functions, each of a single variable, such as 

Modeling systems 
A second feature of LP programs is the inclusion of modeling systems, which 

provide an environment for formulating, solving, reporting on, analyzing, and man- 
aging LP and MILP models. Modeling systems have links to several LP, MILP, and 
NLP solvers and allow users to change solvers by changing a single statement. 
Modeling systems are all designed around a language for formulating optimization 
models, and most are capable of formulating and solving both linear and nonlinear 
problems. Algebraic modeling systems represent optimization problems using alge- 
braic notation and a powerful indexing capability. This allows sets of similar con- 
straints to be represented by a single modeling statement, regardless of the number 
of constraints in the set. For more information on algebraic modeling languages, 
see Section 8.9.3. 
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Another type of widely used modeling system is the spreadsheet solver. Micro- 
soft Excel contains a module called the Excel Solver, which allows the user to enter 
the decision variables, constraints, and objective of an optimization problem into 
the cells of a spreadsheet and then invoke an LP, MILP, or NLP solver. Other 
spreadsheets contain similar solvers. For examples using the Excel Solver, see Sec- 
tion 7.8, and Chapters 8 and 9. 

The power of linear programming solvers 
Modern LP solvers can solve very large LPs very quickly and reliably on a PC 

or workstation. LP size is measured by several parameters: (1) the number of vari- 
ables n, (2) the number of constraints m, and (3) the number of nonzero entries nz 
in the constraint matrix A. The best measure is the number of nonzero elements nz 
because it directly determines the required storage and has a greater effect on com- 
putation time than n or m. For almost all LPs encountered in practice, nz is much 
less than mn, because each constraint involves only a few of the variables x. The 
problem density 100(ndmn) is usually less than 1%, and it almost always decreases 
as m and n increase. Problems with small densities are called sparse, and real world 
LPs are always sparse. Roughly speaking, a problem with under 1000 nonzeros is 
small, between 1000 and 50,000 is medium-size, and over 50,000 is large. A small 
problem probably has m and n in the hundreds, a medium-size problem in the low 
to mid thousands, and a large problem above 10,000. 

Currently, a good LP solver running on a fast (> 500 rnI-Iz) PC with substantial 
memory, solves a small LP in less than a second, a medium-size LP in minutes to 
tens of minutes, and a large LP in an hour or so. These codes hardly ever fail, even 
if the LP is badly formulated or scaled. They include preprocessing procedures that 
detect and remove redundant constraints, fixed variables, variables that must be at 
bounds in any optimal solution, and so on. Preprocessors produce an equivalent LP, 
usually of reduced size. A postprocessor then determines values of any removed 
variables and Lagrange multipliers for removed constraints. Automatic scaling of 
variables and constraints is also an option. Armed with such tools, an analyst can 
solve virtually any LP that can be formulated. 

Solving MILPs is much harder. Focusing on MILPs with only binary variables, 
problems with under 20 binary variables are small, 20 to 100 is medium-size, and 
over 100 is large. Large MILPs may require many hours to solve, but the time 
depends greatly. on the problem structure and the availability of a good starting 
point. We discuss MILP and MINLP formulations in Chapter 9. 

Imbedded Linear Programming solvers 
In addition to their use as stand-alone systems, LPs are often included within 

larger systems intended for decision support. In this role, the LP solver is usually 
hidden from the user, who sees only a set of critical problem input parameters and a 
set of suitably formatted solution reports. Many such systems are available for sup- 
ply chain management-for example, planning raw material acquisitions and deliv- 
eries, production and inventories, and product distribution. In fact, the process indus- 
tries--oil, chemicals, pharmaceuticals-have been among the earliest users. Almost 
every refinery in the developed world plans production using linear programming. 
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When embedded in decision support systems (usually in a Windows environ- 
ment), LP solvers typically receive input data from a program written in C or Visual 
Basic and are often in the form of dynamic link libraries (DLLs). Most of today's 
LP solvers are available as DLLs. 

Available Linear Programming software 
Many LP software vendors advertise in the monthly journal OWMS Today, 

published by INFORMS. For a survey of LP software, see Fourer (1997, 1999) in 
that journal. All vendors now have Websites, and the following table provides a list 
of LP software packages along with their Web addresses. 

Company name Solver name Web addresses1E-mail address 

CPLEX Division of L O G  CPLEX : www.cplex.com 

IBM 

LINDO Systems Inc. 

Dash Associates 

Sunset Software Technology 

Optimization Software www.research.ibm.com/osl/ 
Library (OSL) 

LINDO www.lindo.com 

XPRESS-MP www.dashopt.com 

AXA Sunsetw @ix.netcom.com 

Advanced Mathematical software LAMPS info@ amsoft.demon.co.uk 

7.8 A TRANSPORTATION PROBLEM USING THE EXCEL SOLVER 
SPREADSHEET FORMULATION 

Figure 7.3 displays a Microsoft Excel spreadsheet containing the formulas and data 
for an LP transportation problem. This spreadsheet is one of six optimization exam- 
ples included with Microsoft Excel '97. With a standard installation of Microsoft 
Office, the Excel workbook containing all six examples is in the file 

MicrosoftOffice/office/exarnples/solver/solvsamp.xls 

weeencourage the reader to start Excel on his or her computer, find and open 
this file, and examine and solve this spreadsheet as the rest of this section is read. 
The 15 decision var iabs  are the number of units of a single product to ship from 
three plants to five warehouses. Initial values of these.variables (all ones) are in the 
range C8:GlO. The constraints are (1) the amount shipped from each plant cannot 
exceed the available supply, given in range B16:B18, (2) the amount shipped to 
each warehouse must meet or exceed demand there, given in range C14:G14, and 
(3) all amounts shipped must be nonnegative. Cells C16:G18 contain the per unit 
costs of shipping the product along each of the 15 possible routes. The total cost of 
shipping into each warehouse is in the range C20:G20, computed by multiplying 
the amounts shipped by their per unit costs and summing. Total shipping cost in cell 
B20 is to be minimized. Before reading further, attempt to find an optimal solution 
to this problem by trying your own choices for the decision variables. 
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Goal is to minimize total shipping cost. 

Amount to ship from each plant to each 
warehouse. 

B8:BlO<=B16:B18 Total shipped must be less than or equal to 
supply at plant. 

C12:G12>=C14:G14 Totals shipped to warehouses must be greater 
than or equal to demand at warehouses. 

C8:G10>=0 Number to ship must be greater than or equal 
to 0. 

You can solve this problem faster by selecting the Assume linear model checksbox in the Solver 
Options dialog box before clicking Solve. A problem of this type has an optimum solution at which 

FIGURE 7.3 
A transportation problem in a Microsoft Excel spreadsheet format. Permission by 
Microsoft. 

Algebraic formulation 
Let x, be the number of units of the product shipped from plant i to warehouse 

j .  Then the supply constraints are 

xij  5 avail,, i = 1,2,3 
j =  1 

The demand constraints are 

z n ,  2 demand,, j = 1, ..., 5 
i =  1 
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and the nonnegativities: 

The objective is to minimize 

Cost = 2 C cuxs 

Solver parameters dialog 
To define this problem for the Excel Solver, the cells containing the decision 

variables, the constraints, and the objective must be specified. This is done by choos- 
ing the Solver command from the Tools menu, which causes the Solver parameters 
dialog shown in Figure 7.4 to appear. The "Target Cell"' is the cell containing the 
objective function. Clicking the "Help'3ut~on explains all the steps needed to enter 
the "changing" (i.e., decision) variables and the constraints. We encourage you to 
"Reset all," and fill in this .dialog from scratch. 

Solver options dialog 
Selecting the "Options" button in the Solver Parameters dialog brings up the 

Solver Options dialog box shown in Figure 7.5. The current Solver version does not 
determine automatically if the problem is linear or nonlinear. To inform Solver that 

b&ject to the Comtraintr; --- - 

pkte 

FIGURE 7.4 
Solver parameters dialog box. Permission by Microsoft. 
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FIGURE 7.5 
Solver options diaIog box. Permission by Microsoft. 

the problem is an LP, select the "Assume Linear Model" box. This causes the sim- 
pIex soIver to be used. It is both faster and more accurate for LPs than the general- 
ized reduced gradient (GRG) nonlinear solver, which is the default choice. The 
GRG solver is discussed in Chapter 8. 

Solving with the simplex solver 
Select the '"Show Iteration Results" box, click "OK' in the Solver Options dia- 

log, then click "Solve" on the Solver Parameter dialog. This causes the simplex 
solver to stop after each iteration. Because an initial feasible basis is not provided, 
the simplex method begins with an infeasible solution in phase 1 and proceeds to 
reduce the sum of infeasibilities sinf in Equation (7.40) as described in Section 7.3. 
Observe this by selecting "Continue" after each iteration. The first feasible solution 
found is shown in Figure 7.6. It has a cost of $3210, with most shipments made 
from the cheapest source, but with other sources used when the cheapest one runs 
out of supply. Can you see a way to improve this solution? 

Tf you allow the simplex method to continue, it finds the improved solution 
shown in Figure 7.7, with a cost of $3200, which is optimal (all reduced costs are 
nonnegative). It recognizes that it can save $20 by shifting ten Dallas units from S. 
Carolina to Tennessee, if it frees up ten units of supply at Tennessee by supplying 
Chicago from Arizona (which costs only $10 more). Supplies at Arizona and Ten- 
nessee are completely used, but South Carolina has ten units of excess supply. 
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Amount to ship from each plant to each 
warehouse. 

B8:BlO<=B16:B18 Total shipped must be less than or equal to 
supply at plant. 

C12:G12>=C14:G14 Totals shipped to warehouses must be greater 
than or equal to demand at warehouses. 

C8:GlOr=O Number to ship must be greater than or equal 
to 0. 

You can solve this problem faster by selecting the Assume linear model check box in the Solver 
Options dialog box before clicking Solve. A problem of this type has an optimum solution at which 
amounts to ship are integers, if all of the supply and demand constraints are integers. 

FIGURE 7.6 
First feasible solution. Permission by Microsoft. 

The sensitivity report 
Figure 7.8 shows the sensitivity report, which can be selected from the dialog 

box that appears when the solution algorithm finishes. The most important infor- 
mation is the "Shadow Price" column in the "constraints" section. These shadow 
prices (also called dual variables or Lagrange multipliers) are equal to the change 
in the optimal objective value if the right-hand side of the constraint increases by 
one unit, with all other right-hand side values remaining the same. Hence the first 
three multipliers show the effect of increasing the supplies at the plants. Because 
the supply in South Carolina is not all used, its shadow price is zero. Increasing the 
supply in Tennessee by one unit improves the objective by 2, twice as much as Ari- 
zona. To verify this, increase the Tennessee supply to 261, resolve, and observe that 
the new objective value is $3198. The last five shadow prices show the effects of 
increasing the demands. The "Allowable Increase" is the amount the right-hand 
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Amount to ship from each plant to each 
warehouse. 

B8:B 10<=B 16:B 18 Total shipped must be less than or equal to 
supply at plant. 

C12:G12>=C14:G14 Totals shipped to warehouses must be greater 
than or equal to demand at warehouses. 

C8:GlO>=O Number to ship must be greater than or equal 
to 0. 

FIGURE 7.7 
Optimal solution. Permission by Microsoft. 

side can increase before the shadow price changes, and similarly for the "Allowable 
Decrease." Beyond these ranges, some shipment that is now zero becomes positive 
while some positive one becomes zero. Try right-hand side changes within and 
slightly beyond one of the ranges to verify this. 

The "Adjustable Cells" section contains sensitivity information on changes in 
the objective coefficients. The reduced costs are the qualities Z j  discussed in Sec- 
tion 7.3. These are all nonnegative, as Qey must be in an optimal solution-see 
result 3. Note that the Z j  for the South Carolina-Chicago shipment is zero, indi- 
cating that this problem has multiple optima (because this optimal solution is non- 
degenerate, i.e., all basic variables are positive). The following table shows a set of 
shipping unit amounts that yields no net cost change. 
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Adjustable Cells 

Final Reduced Objective Allowable Allowable 
Cell Name Value Cost Coefficient Increase Decrease 

$C$8 S. Carolina San Fran 0 6 10 1E+30 6 
$D$8 S. Carolina Denver 0 3 8 1E+30 3 
$E$8 S. Carolina Chicago 0 0 6 1E+30 0 
$F$8 S. Carolina Dallas 80 0 5 0 1 
$G$8 S. Carolina New York 220 0 4 4 4 
$C$9 Tennessee San Fran 0 4 6 1E+30 4 
$D$9 Tennessee Denver 0 2 5 1E+30 2 
$E$9 Tennessee Chicago 180 0 4 0 1 
$F$9 Tennessee Dallas 80 0 3 1 0 
$G$9 Tennessee New York 0 4 6 1E+30 4 
$C$10 Arizona San Fran 180 0 3 4 4 
$D$10 Arizona Denver 80 0 4 2 5 . . 

$E$10 Arizona Chicago 20 0 5 1 2 
$F$10 Arizona Dallas 0 1 5 1E+30 1 
$G$10 Arizona New York 0 6 9 lE+30 6 

Constraints 

Final Shadow Constraint Allowable Allowable 
Cell Name Value Price R.H. Side Increase Decrease 

- - 

$B$8 S. Carolina Supply 300 0 3 10 1E+30 10 
$B$9 Tennessee Supply 260 -2 260 80 10 
$B$10 Arizona Supply 280 -1 280 80 10 
$C$12 San Fran Demand 180 4 180 10 80 
$D$12 Denver Demand 80 5 80 10 80 
$E$12 Chicago Demand 200 6 200 10 80 
$F$12 Dallas Demand 160 5 160 10 80 
$G$12 New York Demand 220 4 220 10 220 

FIGURE 7.8 
Sensitivity report. 

Shipment Change Cost change 

South Carolina-Chicago +1 +6 
Tennesseexhicago -1 -4 
Tennessee-Dallas +1 +3 
S. Carolina-Dallas -1 -5 
Total 0 

These changes leave the amounts shipped out from the plants and into the ware- 
houses unchanged. 
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7.9 NETWORK FLOW AND ASSIGNMENT PROBLEMS 

This transportation problem is an example of an important class of LPs called net- 
workflow problems: Find a set of values for the flow of a single commodity on the 
arcs of a graph (or network) that satisfies both flow conservation constraints at each 
node (i-e., flow in equals flow out) and upper and lower limits on each flow, and 
maximize or minimize a linear objective (say, total cost). There are specified sup- 
plies of the commodity at some nodes and demands at others. Such problems have 
the important special property that, if all supplies, demands, and flow bounds are 
integers, then an optimal solution exists in which all flows are integers. In addition, 
special versions of the simplex method have been developed to solve network flow 
problems with hundreds of thousands of nodes and arcs very quickly, at least ten 
times faster than a general LP of comparable size. See Glover et al. (1992) for fur- 
ther information. 

The integer solution property is particularly important in assignment problems. 
These are transportation problems (like the problem just described) with n supply 
nodes and n demand nodes, where each supply and demand is equal to 1 .O, and all 
constraints are equalities. Then the model in Equations (7.41) through (7.44) has 
the following interpretation: Each supply node corresponds to a "job," and each 
demand node to a "person." The problem is to assign each "job" to a "person" so 
that some measure of benefit or cost is optimized. The variables xii are 1 if "job" i 
is assigned to "person" j, and zero otherwise. 

As an example, suppose we want to assign streams to heat exchangers and the 
cost (in some measure) of doing so is listed in the following matrix: 

Exchanger number 

Each element in the matrix represents the cost of transferring stream i to exchanger 
j. How can the cost be minimized if each stream goes to only one exchanger? 

First let us write the problem statement. The total number of streams n is 4. Let 
cd be an element of the cost matrix, which is the cost of assigning stream i to 
exchanger j. Then we have the following assignment problem: 

Minimize: f(x) = cijxij 
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The constraints (7.46) ensure that each stream is assigned to some exchanger, and 
Equation (7.45) ensures that each exchanger is assigned one stream. Because the 
supplies and demands are integers, this problem has an optimal integer solution, 
with each xi,. equal to 0 or 1. The reader is invited to solve this problem using the 
Excel Solver (or any other LP solver) and find an optimal assignment. 
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PROBLEMS 

7.1 A refinery has available two crude oils that have the yields shown in the following 
table. Because of equipment and storage limitations, production of gasoline, kerosene, 
and fuel oil must be limited as also shown in this table. There are no plant limitations 
on the production of other products such as gas oils. 

The profit on processing crude #1 is $l.OO/bbl and on crude #2 it is $0.70/bbl. 
Find the approximate optimum daily feed rates of the two crudes to this plant via a 
graphical method. 

Maximum allowable Volume percent yields product rate 
Crude #1 Crude #2 (bbyday) 

Gasoline 70 3 1 6,000 
Kerosene 6 9 2,400 
Fuel oil 24 4iO 12,000 

rn 

7.2 A confectioner manufactures two kinds of candy bars: Ergies (packed with energy for 
the kiddies) and Nergies (the "lo-cal" nugget for weight watchers without willpower). 
Ergies sell at a profit of 50# per box, and Nergies have a profit of 60# per box. The 
candy is processed in three main operations: blending, cooking, and packaging. The 
following tableerecords the average time in minutes required by each box of candy, for 
each of the three activities. 

Blending Cooking Packing 

Ergies 1 5 3 
Nergies 2 4 1 

During each production run, the blending equipment is available for a maximum of 14 
machine hours, the cooking equipment for at most 40 machine hours, and the packag- 
ing equipment for at most 15 machine hours. If each machine can be allocated to the 
making of either type of candy at all times that it is available for production, determine 
how many boxes of each kind of candy the confectioner should make to realize the 
maximum profit. Use a graphical technique for the two variables. 
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7.3 Feed to three units is split into three streams: FA, FB, and Fc. Two products are pro- 
duced: P1 and P, (see following figure), and the yield in weight percept by unit is 

Yield 
(weight %) Unit A Unit B Unit C 

Each stream has values in $/lb as follows: 

Stream F p, p2 
Value (Wb) .40 .60 .30 
-- 

Because of capacity limitations, certain constraints exist in the stream flows: 

1. The total input feed must not exceed 10,000 lblday. 
2. The feed to each of the units A, B, and C must not exceed 5000 lblday. 
3. No more than 4000 lblday of P ,  can be used, and no more than $7000 lblday of 
P, can be used. 

FIGURE W.3 

In order to determine the values of FA, FB, and Fc that maximize the daily 
profit, prepare a mathematical statement of this problem as a linear programming 
problem. Do not solve it. 

7.4 Prepare a graph of the constraints and objective function, and solve the following lin- 
ear programming problem 

Maximize: xl + 2x2 

Subject to: - x ,  + 3x2 < 10 
xl  + x2 1 6  

x ,  - x2 ' 2 

xl + 3x2 2 6 

2x1 + X* 2 4 

x 1 2 0  Xz"0 
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7.5 A chemical manufacturing firm has discontinued production of a certain unprofitable 
product line. This has created considerable excess production capacity on the three exist- 
ing batch production facilities. Management is considering devoting this excess capacity 
to one or more of three new products: Call them products 1,2, and 3. The available capac- 
ity on the existing units that might limit output is summarized in the following table: 

Available time 
Unit @/week) 

Each of the three new products requires the following processing time for completion: 

Productivity (Watch) 

Unit Product 1 Product 2 Product 3 

The sales department indicates that the sales potential for products 1 and 2 exceeds the 
maximum production rate and that the sales potential for product 3 is 20 batches per 
week. The profit per batch is $20, $6, and $8, respectively, on products 1, 2, and 3. 

Formulate a linear programming model for determining how much of each prod- 
uct the firm should produce to maximize profit. 

7.6 An oil refinery has to blend gasoline. Suppose that the refinery wishes to blend four 
petroleum constituents into three grades of gasoline: A, B, and C. Determine the mix 
of the four constituents that will maximize profit. 

The availability and costs of the four constituents are given in the following table: 

Maximum quantity 
available Cost 

Constituent* (bbl/da y) per barrel ($) 

*1 = butane 
2 = straight-run 
3 = thermally cracked 
4 = catalytic cracked 

To maintain the required quality for each grade of gasoline, it is necessary to specify 
certain maximum or minimum percentages of the constituents in each blend. These are 
shown in the following table, along with the selling price for each grade. 
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Selling price 
Grade Specification per barrel ($) 

A Not more than 15% of 1 16.20 
Not less than 40% of 2 
Not more than 50% of 3 

B Not more than 10% of 1 15.75 
Not less than 10% of 2 

C Not more than 20% of 1 15.30 

Assume that all other cash flows are fixed so that the "profit" to be maximized is total 
sales income minus the total cost of the constituents. Set up a linear programming 
model for determining the amount and blend of each grade of gasoline. 

'.7 A refinery produces, on average, 1000 gallon/hour of virgin pitch in its crude dis- 
tillation operation. This pitch may be blended with flux stock to make commercial 
fuel oil, or it can be sent in whole or in part to a visbreaker unit as shown in Figure 
P7.7. The visbreaker produces an 80 percent yield of tar that can also be blended with 
flux stock to make commercial fuel oil. The visbreaking operation is economically 
break-even if the pitch and the tar are given no value, that is, the value of the over- 
head product equals the cost of the operation. The commercial fuel oil brings a real- 
ization of 5$/gal, but the flux stock has a cracking value of 8$/gal. This information 
together with the viscosity and gravity blending numbers and product specifications, 
appears in the following table. It is desired to operate for maximum profit. 

FIGURE W.7 

Fuel oil blending problem 

Quantity available Value Viscosity Gravity 
( g a l  (elgal) B1. No. B1. No. 

Pitch P=lOOo-V 0 5 8 
Visbreaker feed V 0 - - 

Tar T = 0.8V 0 11 7 
Flux F = any 8 37 24 
Fuel oil P + T + F  5 21 min 12 min 

Abbreviation: B1. No. = blending number. 

Formulate the preceding problem as a linear programming problem. How many vari- 
ables are there? How many inequality constraints? How many equality constraints? 
How many bounds on the variables? 
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7.8 Examine the following problem: 

Minimize: f = 3x1 + x2 + x 3  

Subject to: x1 - 2x2 + x3 4 11 

- 4 x l - k  X2+  2X3 2 3 

h l  - Xg = -1 

x1, x2, x3 2 0 

Is there a basic feasible solution to the problem? Answer yes or no, and explain. 

7.9 An LP problem his been converted to standard canonical form by the addition of slack 
variables and has a basic feasible solution (with xl  = x2 = 0) as shown in the fol- 
lowing set of equations: 

Answer the following questions: 
(a) Which variable should be increased first? 
(b) Which row and which column designate the pivot point? 
(c) What is the limiting value of the variable you designated part in (a)? 

7.10 For the problem given in 7.9, find the next basis. Show the steps you take to calculate 
the improved solution, and indicate what the basic variables and nonbasic variables are 
in the new set of equations. (Just a single step from one vertex to the next is asked for 
in this problem.) 

7.11 Examine the following problem 

Minimize: f = 3x1 + x2 + x3 * 

Subject to: x1 - 2x2 + x3 5 11 

- 4x1 + X2 + 2 x 3  2 3 

2x1 - Xg = - 1  

Is there a basic feasible solution to the problem? Answer yes or no, and explain. 

7.12 You are asked to solve the following problem: 

Maximize: f = 5 x 1  + 2x2 + 3x3 

Subjectto: x l  + 2x2 + 2x3 + x4 = 8 

3x1 + 4x2 + Xg - X 5 = 7  

Xl,  ... , x 5  2 0 

Explain in detail what you would do to obtain the first feasible solution to this prob- 
lem. Show all equations. You do not have to calculate the feasible solution-just 
explain in detail how you would calculate it. 
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7.13 You are given the following LP equation sets: 

Why is this formulation problematic? 

(b) X1 - 2X2 + x3 = 7 

xl - 3x2 + x4 = 4 

X I  + 3x2 + f = o  

Is the problem that leads to the preceding formulation solvable? How do you interpret 
this problem geometrically? 

(c> 4x1 + 2X, + x3 = 6 

6x, + 3x2 + X4 = 9 

X l  + 3x2 +f  = o  
Apply the simplex rules to minimize f for the formulation. Is the solution unique? 

(d) 4x1 + % + X3 = 7 

6x1 + 3x2 + x4 = 5 

-x1 +f = o  
Can you find the minimum off? Why or why not? 

7.14 Solve the following LP: 

Minimize: f = x ,  + x, 

Subject to: x1 + 3x2 5 12 

- .  
:: 

Does the solution via the simplex method exhibit cycling? 

7.15 In Problem 7.1 what are the shadow prices for incremental production of gasoline, 
kerosene, and fuel oil? Suppose the profit coefficient for crude #1 is increased by 10 
percent and crude #2 by 5 percent. Which change has a larger influence on the objec- 
tive function? 

7.16 For Problem 7.9, find the next basis. Show the steps for calculating the new table, and 
indicate the basic and nonbasic variables in the new table. (Just a single step from one 
vertex to the next is asked for in this problem.) 
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7.17 Solve the following linear programming problem: 

Maximize: f = x l  + 3x2 - x3 

Subject to: x1  + 2x2 + x3 = 4 

2 x 1  + ~2 r 5  

7.18 Solve the following problem: 

Maximize: f = 7 x l  + 12x2 + 3x3 

Subject to: 2x1 + 2x2 + x3 5 16 

7.19 Solve the following problem: 

Maximize: f = 6x1 + 5x2 

Subject to: 2x1 + 5x2 5 20 

-3x, - l l x ,  5 -33 

The following figure shows the constraints. If slack variables x3, x4 and x, are 
added respectively to the inequality constraints, you can see from the diagram that the 
origin is not a feasible point, that is, you cannot start the simplex method by letting 
x, = x2 = 0 because then x3 = 20, x, = - 5, and x, = - 33, a violation of the assump- 
tion in linear programming'that xi 2 0. What should you do to apply the simplex 
method to the problem other than start a phase I procedure of introducing artificial 
variables? 

FIGURE P7.19 
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7.20 Are the following questions true or false and explain why: 
(a) In applying the simplex method of linear programming, the solution found, if one 

is found, is the global solution to the problem. 
(b) The solution to a linear programming problem is a unique solution. 
(c) The solution to a linear programming problem that includes only inequality con- 

straints (no equality constraints) never occurs in the interior of the feasible region. 

7.21 A company has two alkylate plants, A, and A,, from which a given product is distrib- 
uted to customers C,, C,, and C,. The transportation costs are given as follows: 

Refinery A, At A1 A2 A2 A2 
Customer C, C2 C3 C1 c2 C3 
Cost ($/ton) 25 60 75 20 50 85 

The maximum refinery production rates and minimum customer demand rates are 
fixed and known to be as follows: 

Customerorrefinery A, A2 C, C2 C3 
Rate (tonslday) 1.6 0.8 0.9 0.7 0.3 

The cost of production for A, is $30/ton for production levels less than 0.5 todday: for 
production levels greater than 0.5 todday, the production cost is $40/ton. A2's produc- 
tion cost is uniform at $35/ton. 

Find the optimum distribution policy to minimize the company's total costs. 

7.22 Alkylate, cat cracked gasoline, and straight run gasoline are blended to make aviation 
gasolines A and B and two grades of motor gasoline. The specifications on motor 
gasoline are not as rigid as for aviation gas. Physical property and production data for 
the inlet streams are as follows: 

* 

Stream 
-- 

RVP ON(0) ON(4) Available (bbUday) 

Alkylate 5 94 108 4000 
Cat cracked gasoline 8 84 94 2500 
Straight run gasoline 4 74 86 4000 

Abbreviations: 
RVP = Reid vapor pressure (measure of volatility); 
ON = octane number; in parentheses, number of mL/gal of tetraethyl lead (TEL). 

For the blended products: 

Product RVP TEL level ON h f i t  ($mbl) 

Aviation gasoline A 5 7 0 r 80 5.00 
Aviation gasoline B 5 7 4 r 91 5.50 
Leaded motor gasoline - 4 r 87 4.50 
Unleaded motor gasoline - 0 r 91 4.50 

Set up this problem as an LP problem, and solve using a standard LP computer code. 

7.23 A chemical plant makes three products and uses three raw materials in limited supply 
as shown in Figure W.23. Each of the three products is produced ina  separate process 
(1,2,3) akording to the schematic shown in the figure. 
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Monomer 
E 

; 

Monomer 
B 

Inhibitor 
C 

FIGURE W.23 

The available A, B, and C do not have to be totally consumed. 

% Process data: 

lwaxilnum 
Raw available Cost 

makrial (lbtday) (WW Ib) 

Reactants needed Operating Selling price 
Process Product (lbflb product) cost ($1 of product ($) 

1 E $ A , ~ B  1.001100 lb A  4.001100 lb E 
(consumed in 1) 

2 F $A,$ 0.501100 lb A  3.301100 lb F 
(consumed in 2) 

3 G laB~,4c l.oo/loo lb G 3.801100 lb G 
(produced in 3) 

Set up the linear profit function and linear constraints to find the optimum product dis- 
tribution, and apply the simplex technique to obtain numerical answers. 

7.24 Ten grades of crude are available in the quantities shown in the table ranging from 10,000 
30,000 barrels per day each, with an aggregate availability of 200,000 barrels per day. 

Refineries X, Y, and Z have incremental operations with stated requirements totaling 
180,000 barrels per day. Of the available crude, 20,000 barrels per day is not used. One 
of the refineries can operate at two incremental operations, XI and X2, which represent 
different efficiency levels. The net profit or loss for each crude in each refinery operation 
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is given in the table in cents per barrel. It is assumed that the crude evaluations reflect the 
resulting product distribution from these incremental operations. (In practice, however, 
if further debits are encountered in the solution because of lack of product quality or for 
transportation of surplus products, suitable corrections can be made in the crude evalua- 
tions and the problem reworked until a realistic solution is obtained.) 

Maximize the profit per day by allocating the ten crudes among the three 
refineries with X being able to operate at two levels, so specify X ,  and X, as well as 
Y and 2. 

Crude evaluation, availability and requirement 

Abbreviations: M = 1000; bpd = barrels per day; cpb = cents per barrel. 

C r u d e a  b c d e f g h i j Required 
(Profit or loss of each refinery cpb) (M bpd) 

7.25 Consider a typical linear programming example in which N grades of paper are pro- 
duced on a paper machine. Due to raw materials restrictions not more than ai tons of 
grade i can be produced in a week. Let 

Refinery 
x1 
x2 
Y 
Z 
Available 

(M bpd) 

xi = numbers of tons of grade i produced during the week 
bi = number of hours required to produce a ton of grade i 
pi = profit made per ton of grade i 

30 
40 
50 
60 

200 

Because 160 production hours are available each week, the problem is to find non- 
negative values of xi, i = 1 ,  . . . , N, and the integer value N that satisfy 

and that maximize the profit function 

Data: 
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