Dewvaporation "Carrier-Gas Enhanced Atmospheric Pressure Desalination"

Noah Abbas and Kehinde Adesoye

Outline

- Existing Technologies
 - Reverse Osmosis
 - Thermal Processes
- Dewvaporation Explanation
- Mathematical Model
- > Cost Calculations

Desalination

- Process of purifying seawater
- A solution to water shortages around the world
- Existing technologies
 - Reverse Osmosis
 - Thermal Evaporation
 - Dewvaporation

Factors of Comparison

- Purity of water
- > Economics
 - Energy efficiency
 - Production rate
- Regional factors
 - Resources vary from region to region
 - Proximity to ocean
 - Availability of fuel

Reverse Osmosis

- Most common in the USA
- Solvent forced through membrane
- Energy consumption from pressure
- Susceptible to fouling, scaling and degradation

Process of Reverse Osmosis

- Pressurized feed
- Applied pressure > Osmotic pressure
- Semi-permeable membrane

Incomplete salt removal (different rates)

Typical RO Plant

Problems

- Membrane fouling
 - Caused by micro organisms and particles
 - Reduce water quality
 - Add chemical e.g. chlorine
 - Ultra-filtration of suspended solids
- Scaling
 - Formation of salt precipitate e.g. CaCO₃
 - Reduces efficiency
 - Add anti-scalant e.g. H₂SO₄

RO Statistics

- Operating costs
 - 2.50 4.00 \$/1000gal of product²
- Energy requirements
 - 26 KWh/1000gal of product²
- Capital cost for sea water desalination
 - 4.00 10.00 \$/gal-day²

Multi Stage Flash Distillation

- 80% of world's thermal desalination product
- Energy needed for heat
- Recycles heat
- Two heat sources for incoming saline feed
 - External
 - Heat of vaporization

Schematic of MSF

- Additional heat
- Pressure released in first chamber
- Water boils quickly
- Evaporation and condensation

Problems

- > Scale formation
 - Extra heat transfer layer
 - Reduces heat transferred
 - Reduces efficiency
- > Erosion and Corrosion
 - Use stainless steel

Evaporation Statistics

- Energy requirements
 - 56 KWh/1000gal of product²
- Costs are very high
 - Because of expensive energy, prices are in the range of \$12 to \$14 per 1000 gallons⁵ in USA
 - Only economically feasible in regions like the Middle East, where fuel is cheap and water is scarce

Dewvaporation

- Developed by James Beckman
- Arizona State University
- > Relies on air circulation
 - Air moves in a cycle
 - Works to recycle heat
- > Waste heat
- > Atmospheric pressure

Dewvaporation Apparatus

Economic Analysis

- > The cost has two main components
- Operational costs associated with the heat added
 - Heat required to created a larger temperature difference from dew formation to evaporation side
- Cost associated with equipment
 - Modeled as a heat exchanger

Differential Analysis

Heat Transfer Model Region 1

Mass Balance:

$$GV_z = GV_{z+dz} + dW_d$$

Heat Balance:

$$Gh_a(T_1) + GVh_v(T_1) = Gh_a(T + dT_1) + GVh_V(T + dT_1) + \Delta h_{vap}dW_d + hL(T_1 - T_2)dz$$

Heat Transfer Model

Region	Mass balance	Heat balance					
1	$GV_z = GV_{z+dz} + dW_d$	$Gh_{a}\left(T_{1}\right)+GVh_{v}\left(T_{1}\right)=Gh_{a}\left(T+dT_{1}\right)+GVh_{V}\left(T+dT_{1}\right)+\Delta h_{\textit{vap}}dW_{d}+hL\left(T_{1}-T_{2}\right)dz$					
2	$FD_z + dW_d = FD_{z+dz}$	$FD_{z}h_{w}(T_{2}) + \Delta h_{v}dW_{d} + hL(T_{1} - T_{2})dz = FD_{z+dz}h_{w}(T_{2} - dT_{2}) + q$					
3	0	$q = UL(T_2 - T_4)dz$					
4	$FB_z = FB_{z+dz} + dW_e$	$FB_zh_w(T_4)+q=FB_{z+dz}h_w(T-dT_4)+\Delta h_vdW_e+hL(T_4-T_5)$					
5	$GV_z = GV_{z+dz} + dW_e$	$Gh_{a}(T_{5}+dT_{5})+GVh_{V}(T_{5}+dT_{5})+\Delta h_{\textit{Vap}}dW_{e}+hL(T_{4}-T_{5})dz=Gh_{a}(T_{5})+GVh_{V}(T_{5})$					

Deriving Differential Equations

Region 1

Mass balance

$$\begin{split} GV_{Z} &= GV_{Z+D} + dW_{d} \\ dW_{d} &= GV_{z} - GV_{z+dz} = GV - G(V_{z} + \frac{\partial V}{\partial T} \frac{\partial T}{\partial Z} \partial Z \\ dW_{d} &= G\frac{dV^{s}}{dT_{1}} \bigg)_{T1} dT_{1} \end{split}$$

Heat balance

$$\begin{split} Gh_a\left(T_1\right) + GVh_{\mathbf{v}}(T_1) &= Gh_a\left(T - dT_1\right) + GVh_{\mathbf{v}}\left(T - dT_1\right) + \Delta h_{\mathbf{vap}}dW_d + hL(T_1 - T_2)dz \\ Gh_a\left(T_1\right) - Gh_a\left(T - dT_1\right) + GVh_{\mathbf{v}}\left(T_1\right) - GVh_{\mathbf{v}}\left(T - dT_1\right) &= \Delta h_{\mathbf{vap}}dW_d + hL(T_1 - T_2)dz \end{split}$$

Deriving Differential Equations (Continued)

$$-GCp_{air_1}-GV^5Cp_vdT_1=\Delta h_{vap}dW_d+hL(T_1-T_2)dz$$

Substituting the equation for dWd

$$\begin{split} -\left(GCp_{\mathit{air}} + GV^{\mathsf{S}}Cp_{\mathit{v}}\right)dT_{1} &= \Delta h_{\mathit{vap}}G\frac{dV^{\mathsf{S}}}{dT_{1}}\bigg)_{\mathit{T}1}dT_{1} + hL(T_{1} - T_{2})dz \\ dT_{1} &= \frac{-hL(T_{1} - T_{2})dz}{\left(GCp_{\mathit{air}} + GV^{\mathsf{S}}Cp_{\mathit{v}}\right) - \Delta h_{\mathit{vap}}G\frac{dV^{\mathsf{S}}}{dT_{1}}} \end{split}$$

Note that when: $V < V^{5}$, no condensation takes place and $dW_{d} = 0$.

$$dT_1 = \frac{-hL(T_1 - T_2)dz}{GCp_{air} + GV^5Cp_v}$$

Equations Used

$$dT_1 = \frac{-hL(T_1 - T_2)dz}{GCp_{air} + GV^*Cp_v}$$

$$dW_d = G \frac{dV^s}{dT_1} \bigg|_{T_1} dT_1$$

$$dT_{2} = \frac{dW_{d}\left(h_{\mathbf{w}}\left(T_{2} - dT_{2}\right) + \Delta h_{\mathbf{vap}}\right)}{FD_{x}Cp_{\mathbf{w}}} + \left[\frac{UL(T_{2} - T_{4})}{FD_{x}Cp_{\mathbf{w}}} - \frac{hL(T_{1} - T_{2})}{FD_{x}Cp_{\mathbf{w}}}\right]dz$$

$$dT_{3} = \frac{h_{45}L(T_{4} - T_{5})dz - h_{24}L(T_{2} - T_{4})dz + \Delta h_{v}dW_{e} - dW_{e}h_{w}(T + dT_{3})}{FB_{x}Cp_{w}}$$

$$dT_{5} = \frac{-hL(T_{4} - T_{5})dz}{GCp_{air} + GV^{5}Cp_{v} + \Delta h_{vap}G\frac{dV^{5}}{dT_{5}}}$$

$$dW_e = G\frac{dV^s}{dT_s}dT_s$$

Solving Differential Equation in Spreadsheet

	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q
1																	
2	Cpair	29.07	J/mol/k				Heat Trans	leat Transfer Coefficients				Region 1	Dewformation Air Stream				
3	C _{pwater vap}	or 37.08	J/mol/K				h12	6.09E-05	J/cm²/s/K	(from moheat b	ook equation	19-25)	Region 2	Pure Water	Stream		
4	Cpwater	74.54	J/mol/k				h14	6.09E-05	J/cm²/s/K				Region 3	Wall			
5	∆h _{vap}	40600	J/mol				h24	0.000842	J/cm²/s/K				Region 4	Seawater/Br	ine		
6	Δz	1	cm				h45	0.001191	J/cm²/s/K				Region 5	Evaporation	Air Stream		
7	L	100															
8	G	4000	mol/h														
9	G	1.11	mol/s														
10	delT	10.00	С														
11	hw	1892.00	J/mol					FD final	1.821575	mol/s	Q	323	W	А	67100	cm ²	
12	FB top	7000.00	mol/h						6557.67	mol/hr		1162800	J/hour		6.71	m ²	
	FB top		mol/s						31.2204	gal/hr							
	FB top	33.32629	gal/hr						749.2895	gal/day							
15																	
16	Z		T2	T4			dT2	dT4	dT5	dVVd	dVs/dT1	dWe		Vsd	Vd	Vse	Ve
17		0 75.00		20		0.017529	0			1.82100668		-1.0348E-05		0.001094		0.000585	1.6
18		1 74.98			64.84866	-4.1E-06	0.06288	-0.00764		1.33309E-06		-1.02251E-05			0.001094		
19 20		2 74.98 3 74.97	74.94 74.87		64.69752 64.54672			-0.00752 -0.0074	-0.1508 -0.15045	1.43134E-06 1.43022E-06		-1.00938E-05 -9.96429E-06			0.0010928 0.0010915		1.63998 1.63997
21		4 74.96			64.39626			-0.0074		1.43022E-06 1.4291E-06		-9.96429E-06			0.0010915		
22		5 74.95			64.24616			-0.00726		1.42798E-06		-9.71048E-06			0.0010302		
23		6 74.94						-0.00704	-0.14941	1.42686E-06		-9.58613E-06			0.0010876		
24		7 74.93			63.947			-0.00692		1.42573E-06		-9.46346E-06			0.0010864		
25		8 74.92			63.79795			-0.00681	-0.1487	1.4246E-06		-9.34245E-06			0.0010851	0.000543	
26		9 74.91	74.50	19.89088	63.64925	0.010362	0.06246	-0.00669	-0.14834	1.42347E-06	0.0001374	-9.22307E-06	6.217E-05		0.0010838		1.6399
27		0 74.90	74.44	19.88419	63.5009	0.010362	0.062401	-0.00658	-0.14799	1.42234E-06	0.0001373	-9.10532E-06	6.153E-05	0.0010871	0.0010825	0.000533	1.63991
28		1 74.89		19.87762	63.35291	0.010361	0.062341	-0.00646		1.42121E-06	0.0001372	-8.98915E-06			0.0010812	0.000528	
29		2 74.88			63.20529	0.01036		-0.00635		1.42007E-06		-8.87456E-06			0.00108		
30		3 74.87	74.25		63.05802			-0.00623		1.41894E-06	0.000137	-8.76152E-06			0.0010787		
31		4 74.86						-0.00612		1.4178E-06		-8.65002E-06			0.0010774		
32		5 74.85 C 74.84			62.76456			-0.00601	-0.14618	1.41666E-06		-8.54003E-06					
33 34		6 74.84 7 74.83			62.61837 62.47255			-0.0059 -0.00579	-0.14582 -0.14546	1.41551E-06 1.41437E-06		-8.43154E-06 -8.32451E-06			0.0010748 0.0010736		
35		7 74.83 8 74.82		19.83477	62.3271	0.010356		-0.00579	-0.14546	1.41437 E-06 1.41322E-06		-8.21895E-06			0.0010736		
36		9 74.81	73.88		62.18201			-0.00566	-0.14509	1.41322E-06 1.41207E-06		-8.11482E-06			0.0010723	0.000495	
37		0 74.80		19.82353		0.010355		-0.00557		1.41092E-06		-8.01211E-06			0.001071		
38		1 74.79			61.89293			-0.00535	-0.14398	1.40977E-06		-7.91079E-06			0.0010685		
39		2 74.78			61.74895			-0.00524	-0.14361	1.40861E-06		-7.81086E-06			0.0010672		1.6398
40		3 74.76				0.010351		-0.00513		1.40746E-06		-7.71229E-06			0.0010659		
41		4 74.75		19.80235			0.061563	-0.00503		1.4063E-06		-7.61506E-06			0.0010647		
42		5 74.74			61.31923			-0.00492		1.40514E-06		-7.51915E-06					

Heating the Air

- Heat needs to be added to achieve a temperature difference from dewvaporation to evaporation side
 - Can be added as steam
 - Adding steam keeps air saturated
- ➤ This made ΔT and G of the air stream above the tower design parameters

Results of Model

- Model considered credible if temperature profile was appropriate
 - Temperature of evaporation side air had to reach ambient air temperature (25°C) at bottom of column
- Air flow rate (G) had the most dramatic effect on product flow and heating requirements

Temperature Profile

Equipment Cost and Energy Cost Calculations

Design	G mol/h	Qboiler J/hour	FD gal/day	FB gal/day	FAC \$	Operating Cost \$/1000gallons
1	1000	290700	187.85	954.77	\$1,557.14	\$5.86
2	2000	581400	272.06	870.56	\$1,665.91	\$4.27
3	3000	872100	562.05	580.56	\$1,725.26	\$1.81
4	4000	1162800	749.33	393.29	\$1,773.35	\$1.30
5	5000	1453500	936.60	206.01	\$1,830.24	\$1.00
6	6000	1744200	1123.76	18.85	\$1,867.10	\$0.79

Cost \$/1000gallons

Equipment Cost and Energy Cost vs. Air Flow

- Energy cost goes up sharply
 - More air to heat

- Equipment cost increases
 - More expensive blower
 - Slightly higher tower

Fixed Annualized Cost

- > 10 years of operation
- > Production of 200 to 1200 gal/day

Conclusions

- Dewvaporation is on the low end of costs for current desalination technologies
 - Flow rates similar to Beckman's had similar costs
 - This is in the \$1.70 to \$3.70/1000gallon range
- Most effective in places like Arizona where the air is dry

