Biorefineries

Courtney Waller James Carmer Dianne Wilkes Sarosh Nizami

Biorefinery:

- Biomass conversion
- Fuels, power, chemicals

[4]

- There is a wide variety of Biomass Feestock in the United States
- Mass Production of many <u>different</u> chemicals from biomass is not a common practice

[8]

World Energy Problem: Refining Fossil Fuels Releases greenhouse gases, causing global warming

World Energy Problem: Decreasing fossil fuels [2]

Proposal

By having ONE refinery that will produce many things from many feedstocks, utilities, power, and energy will be conserved

Chemicals that may be used for energy (biodesiel and bio-gasoline) will help solve the world energy problem and decrease the amount of fossil fuels burned

Advantages

Minimizes Pollution

Reduces Waste

[5]

Products

- Ethanol
- Plastics
- Solvents
- Adhesives
- Lubricants

[7]

Chemical Intermediates

Many, many different decisions to make when considering constructing and operating a biorefinery!

Biorefinery Concept

Types of Biorefineries

Phase 1: fixed processing capabilities

Phase 2: capability to produce various end products and far more processing flexibility

Phase 3: mix of biomass feedstocks and yields many products by employing a combination of technologies.

Utilities and Biorefineries

But...would it be more profitable to integrate all processes into one refinery??

Utilities and Integrated Biorefineries

One power plant for all processes: centralized utilities

Utilities and Integrated Biorefineries

Overhead is minimized

Utilities can be produced and distributed to each process

Therefore, it is more profitable!

How many different options?

- Whether or not to build each process:
- 2 options for every process:
 =2²⁴
- 16,777,216 options!!!
- Not including:
 - Different Flow Rates
 - Input Options
 - Expansions

Narrowing it down

Mathematical Model

Objective: Maximize the Net Present Value

- Eliminate processes/products that are the least profitable
- Select the most profitable processes and their corresponding capacities and production rates throughout the project lifetime

Net Present Value:

$$NPV = \sum_{t} (\operatorname{cash}(t)) \cdot df$$

The Net Present Worth (NPW) is "the total of the present worth of all cash flows minus the present worth of all capital investments."

Fixed Capital and Capacity

 $FC(i) = \alpha(i) \cdot Y(i, t) + \beta(i) \cdot capacity(i, t)$

 \sum FC(i) \leq investment

α is minimal cost to build a process, β is incremental capacity cost, and Y(i,t) is binary variable (0 or 1) that determines whether process will be built

- capacity(i,t) Y(i,t) maxcapacity(i,t) ≤ 0
 capacity(i,t) Y(i,t) mincapacity(i,t) ≥ 0
 - $\sum output(i, j, t) \leq capacity(i, t)$
- Process may not exceed maximum and minimum capacity requirements
 - If Yi=0, then capacity also is 0; therefore, the process will not be built

input(i, j, t) = raw(i, j, t) +
$$\sum_{k \neq i}$$
 flow(k, i, j, t)

- input(i,j,t) is the amount of chemical j that is input into process i
- flow(i,k,j,t) represents the flow of a chem. j from process i to k
 - raw(i,j,t) is the amt of raw material to be bought for process i

input(i, j, t) = f(i, j)
$$\sum_{jj}$$
 input(i, jj, t)
output(i, j, t) = g(i, j) \sum_{jj} output(i, jj, t)

- f(i,j) relates amounts of each input needed for each process
- g(i,j)relates amounts of each product from process i

Mass Balances around each process:

$$\sum_{i} \text{output}(i, j, t) = \sum_{i} \text{input}(i, j, t)$$

output(i, j, t) = sales(i, j, t) +
$$\sum_{k \neq i} \text{flow}(i, k, j, t)$$

sales(i,j,t) is the amount of chemical j from process i that is sold

flow(i, k, j, t) = γ (i, j, k) · output(i, j, t)

materials(t) =
$$\sum_{i,j} raw_price(j,t) \cdot raw(i, j, t)$$

 $\gamma(i,j,k)$ defines the possible transfer of products as output of process i to be used as input into process j

operatingcost(i, t) = $\delta(i) \cdot Y(i, t) + \varepsilon(i) \cdot \sum_{i} output(i, j, t)$

 δ is the minimum operating cost, ϵ is the incremental operating cost

revenue(j, t) = price(j, t)
$$\cdot \sum_{i}$$
 sales(i, j, t)

$$\sum_{i} \text{sales}(i, j, t) \leq \text{demand}(j, t)$$

capacity(i, t) = capacity(i, t - 1) + expansion(i, t) expansion(i, t) - X(i, t)maxexpansion(i, t) ≤ 0 expansion(i, t) - X(i, t)minexpansion(i, t) ≥ 0 $\sum_{t} X(i, t) \leq allowable number of expansions$ $X(i, t) \leq \sum_{t}^{T} Y(i, t)$ $X(i, t) + Y(i, t) \leq 1$

1

utilityrequirements(i, u, t) \leq utilities(i, u, t)

 $\sum_{i} \text{utilities}(i, u, t) \leq \text{utilitycapacity}(u, t)$ utilitycapacity(u, t) - Z(u, t) · maxutilitycapacity(u) ≤ 0 utilitycapacity(u, t) - Z(u, t) · minutilitycapacity(u) ≥ 0

FCutilities(u, t) = $a(u) \cdot Z(u, t) + b(u) \cdot \text{utilitycapacity}(u, t)$

utility cos t(u, t) =
$$c(i) \cdot \sum_{t'}^{\infty} Z(u, t') + d(u) \cdot \sum_{i}^{\infty} utilities(i, u, t)$$

cash(t) = revenue(t - 1) - operatingc ost(t - 1) - investment (t - 1) - material cost(t - 1)investment (t) = $\sum_{i} FC(i, t) + \sum_{u} FCutilitie s(u, t)$

investment (t) $\leq \operatorname{cash}(t - 1)$ $NPV = \sum_{t} \operatorname{cash}(t) \cdot df$

Overview

Overview

Building/Expansions

- Capacity
 - Fixed Capital Investment
- Utilized Capacity
 - Operating Costs
 - Required Utilities
 - Utilitity Capacity/Investment
 - Input/Output
 - Sales
 - Intermediate chemicals

GAMS File

```
mincap(i,t)
                                maximum capacity constraint
        maxcap(i,t)
                                minimum capacity constraint
        maxcapacity eq(i,t) actual production
        input1(i,j,t)
                               input = raw chemical + flow from other processes
        input2(i,j,t)
                                stoichiometry of reactants
        output1(i,j,t)
                                output related to total input
        output2(i,j,t)
                                output = sales + flow to other processes
        output3(i,t)
                                     mass input = output
        flow_eq(i,k,j,t) rules for product flow
        FCI(i,t)
                                Fixed Capital Investment
        investment_eq
                                total available for investment
        materials(t)
                                material cost
        operatingcost_eq(i,t) operating cost
        revenue_eq(j,t)
                                revenue
        demand eq(j,t)
                                demand
        NPW
                                net present worth
                                                        ;
mincap(i,t) .. capacity(i,t) - Y(i,t)*mincapacity(i) =g= 0 ;
maxcap(i,t) .. capacity(i,t) - Y(i,t)*maxcapacity(i) =1= 0 ;
maxcapacity eq(i,t) .. sum(j,output(i,j,t)) =l= capacity(i,t) ;
input1(i,j,t) .. input(i,j,t) =e= raw(i,j,t) + sum(k$(ord(k)<>ord(i)),flow(k,i,j,t)) ;
input2(i,j,t) .. input(i,j,t) =e= f(i,j)*sum(jj,input(i,jj,t)) ;
output1(i,j,t) .. output(i,j,t) =e= g(i,j)*sum(jj,output(i,jj,t)) ;
output2(i,j,t) .. output(i,j,t) =e= sales(i,j,t) + sum(k%(ord(k)<>ord(i)),flow(i,k,j,t)) ;
output3(i,t) .. sum(j,input(i,j,t)) =e= sum(j,output(i,j,t)) ;
flow_eq(i,k,j,t) .. flow(i,k,j,t) =l= gamma(i,j,k)*output(i,j,t) ;
FCI(i,t) .. FC(i,t) =e= (Y(i,t)*alpha(i) + beta(i)*capacity(i,t)) ;
investment eq .. sum((i,t), FC(i,t)) =1= investment ;
materials(t) .. materialcost(t) =e= sum((i,j), raw_price(j,t)*raw(i,j,t)) ;
operatingcost eq(i,t) .. operatingcost(i,t) =e= delta(i)*Y(i,t) + epsilon(i)*sum(j,output(i,j,t)) ;
revenue_eq(j,t) .. revenue(j,t) =e= price(j,t)*sum(i, sales(i,j,t)) ;
demand eq(j,t) .. sum(i,sales(i,j,t)) =l= demand(j,t) ;
NPW .. (sum((j,t), revenue(j,t)) - sum((i,t),operatingcost(i,t))) - sum((i,t), FC(i,t))- sum(t,materialcost(t)) =e= z;
```

Model biorefining /all/ ;

		884	VARIABLE	outpu	ıt.L	total	output	from	process				
				1		2		3		4		5	
	p1 .E7	ГН	10000.00	00 I	.0000.	.000	10000.	000	10000.00	0	10000.00	0	
	p2 .Li	AC	10000.00	10 1	.0000.	.000	10000.	000	10000.00	0	10000.00	0	
	p3 .A(CE	504.94	11	504.	.941	504.	941	504.94	1	504.94	1	
	рЗ.Н2	20	2756.63	30	2756.	.630	2756.	630	2756.63	0	2756.63	0	
	p3 .C(02	6738.42	29	6738.	429	6738.	429	6738.42	9	6738.42	9	
	p4 .E7	THLAC	10000.00	100	.0000.	.000	10000.	000	10000.00	0	10000.00	0	
	p8 .D:	ILAC	10000.00	100	.0000.	.000	10000.	000	10000.00	0	10000.00	0	
	p13.LH	EVU	10000.00	100	.0000.	.000	10000.	000	10000.00	0	10000.00	0	
	p15.ST	UC	10000.00	10 1	.0000.	.000	10000.	000	10000.00	0	10000.00	0	
	p17.5%	YN	10000.00	10 1	.0000.	.000	10000.	000	10000.00	0	10000.00	0	
	p18.Gi	AS	10000.00	10 1	.0000.	.000	10000.	000	10000.00	0	10000.00	0	
	p19.MH	ETH	10000.00	10 1	.0000.	.000	10000.	000	10000.00	0	10000.00	0	
	p21.E7	THAC	10000.00	10 1	.0000.	.000	10000.	000	10000.00	0	10000.00	0	
	p23.Vi	AM	10000.00	10 1	.0000.	000	10000.	000	10000.00	0	10000.00	0	
	p24.PV	VAC	10000.00	10 1	.0000.	000	10000.	000	10000.00	0	10000.00	0	
		+		6									
		·		Ŭ									
	p1 .E7	ГН	10000.00	00									
	p2 .Li	AC	10000.00	00									
	p3 .A(CE	504.94	11									
	р3 .Н2	20	2756.63	30									
	p3 .C0	02	6738.42	29									
	p4 .EC	THLAC	10000.00	00									
	p8 .D:	ILAC	10000.00	00									
	p13.LH	EVU	10000.00	00									
	p15.នា	UC	10000.00	00									
	p17.SY	YN	10000.00	00									
	p18.Gi	AS	10000.00	00									
	p19.MH	ETH	10000.00	00									
	p21.E7	THAC	10000.00	00									
	p23.Vi	AM	10000.00	00									
	p24.PV	VAC	10000.00	00									

Where do the parameters come from?

- Determine process specifics
 - Equipment
 - Reaction
 - Endothermic/exothermic
 - Required utilities
 - Labor requirements

Where do the parameters come from?

Graph of FCI vs. Feed Rate

- $\blacksquare \alpha$ is the y-intercept
- β is the slope

Graph of the Operating Cost vs. Feed Rate

- δ is the y-intercept
- ε is the slope

Simulations on the Individual Process

- From SuperPro & Proll:
 - Feed Rates between 10 to 10,000 kg/hr
 - Equipment costs
 - Utility costs
 - Profitability

Reactor Cost vs. Feed Rate

Ethyl Lactate

Ethyl Lactate Costs

Operating Costs do not include utilities.

Minimum Equipment Size

Fermentor was 225 liters.

Reactor was 50 liters.

CSTR for Dilactide 4.0 ft³

Distillation Column for Ethyl Lactate 4.0 ft³

Results!!!

From more than 16 million options....

Run this model in 90 seconds

Results: 5 Million Dollar Investment

	year												
	1	2	3	4	5	6	7	8	9	10			
Ethanol													
Lactic													
Dilactide													
Levullinic													
Succinic													
Eth. Lact													
VAM													
PVA													

- Investment: 5 million
- NPV: 27.9 million

Results: 5 Million Dollar Investment

Results: 5 Million Dollar Investment

Results: 20 Million Dollar Investment

	1	2	3	4	5	6	7	8	9	10
Ethanol										
Lactic A										
Dilactide										
Levullinic										
Succinic										
Eth. Acet										
VAM										
PVA										

building

expansion

Investment:20 million

NPV: 24.5 million

Results: 20 Million Dollar Investment

_													
			year										
			1	2	3	4	5	6	7	8	9	10	
		Ethanol											
		Lact.A											
		Dilactide											
		Levullinic											
		Succinic											
		Ethyl Acet											
		VAM											
		PVA											

- Investment: 7.5 million
- NPV: 28.8 million

Results: Investment Comparison

Results: Non-integrated Processes

building
expansion

- Investment: 5.1 million
- NPV: 24.1 million

Results: Non-integrated Processes

Results: Non-integration vs. Integrated

Results: Increasing Prices

	year										
		2	3	4	5	6	7	8	9	10	
Ethanol											
Lact. A											
Ethyl Lact											
Dilactide											
Levullinic											
Succinic											
Syngas											
Ethyl Acet											
VAM											
PVA											

building expansion

- Investment: 12.9 million
- NPV: 83.6 million

Results: Increasing Prices

Results: Increasing Prices

Recommendations

Products/waste can be used in the power generation plant instead of purchasing burning material from outside source

Location options

Conclusion

- Our model can be used to find optimal operating conditions for a biorefinery!!
- Biorefineries that can produce a variety of products are more economical and profitable!!

Questions?

References

- 1. Dreamstime. Refinery Pollution 2. http://www.dreamstime.com/refinerypollution2-image134194
- 2. Earth Trends: The environmental information portal. <u>http://earthtrends.wri.org/maps_spatial/maps_detail_static.php?map_select=5</u> <u>05&theme=6</u>.
- 3. 3
- 4. <u>http://www.energy.iastate.edu/becon/tour/page.cfm?page=13</u>
- 5. Energy Kids Page. http://www.eia.doe.gov/kids/energyfacts/sources/renewable/biomass.html
- 6. Biorefineries: Current Status, Challenges, and Future Direction. S. Fernando, S. Adhikari, C. Chandrapl, and N. Murali. Energy and Fuels **2006**, 20, 1727.
- 7. Cane Harvesters. <u>http://caneharvesters.com/index.php?option=content&task=view&id=173</u>
- 8. <u>http://www.cheshirerenewables.org.uk/images/biomass_strat.jpg</u>
- 9. <u>http://www1.eere.energy.gov/biomass/images/chart_biomass_process.jpg</u>
- 10. http://www.rsc.org/ejga/GC/2006/b604483m-ga.gif
- 11. http://www.nrel.gov/biomass/images/biorefinery_concept.gif