

Cartilage Tissue Engineering

Emily Burdett Victoria Froude

May 2, 2006

Overview

- Cartilage damage in the knee is a major problem
- We present a novel tissue engineering technique for repairing cartilage damage with autologous chondrocyte cells
- Mathematical modeling can be useful to help predict implant behavior
- The FDA approval process and product pricing were modeled in order to evaluate risk

Cartilage

Ref: football.calsci.com/ images/knee_cartilage.jpg

- Connective tissue found in all joints
 - Functions as cushioning and support
- Cartilage is composed of chondrocytes, collagen, and proteoglycans.
- Articular cartilage is found in the knee joint.
 - Strongest type of cartilage

Cartilage Damage

- Tears and holes develop in cartilage due to injury and stress.
- No vascular system is present throughout the cartilage to initiate repair after damage.
- Damage develops in cartilage and extends into the underlying bone.

http://www.orthogastonia.com/index.php/fuseaction/patient_ed.top icdetail/TopicID/a93dd54cd3d79c0d8bedae1537bc7659/area/17

Reparative Surgeries

- Inflict further damage to initiate the healing response.
 - New tissue does not have the required mechanical strength.
 - Results are temporary.

http://www.orthogastonia.com/index.php/fuseaction/patient_ed.topicdetail/TopicID/a93dd54cd3d79c0d8bedae153 7bc7659/area/17

Restorative Surgeries

- Replace cartilage with cells or donor tissue.
 - Invasive
 - Lack reliability
 - High risk of initiating an immune response
 - Cells migrate from damage site

http://www.orthogastonia.com/index.php/fuseaction/patient_ed.to picdetail/TopicID/a93dd54cd3d79c0d8bedae1537bc7659/area/17

Our Solution

1) Harvest and proliferate cells from patient

2) Embed cells in gelatin microcapsules

3) Suspend capsules in crosslinkable polymer

4) Inject polymer into defect and crosslink *in situ*

After crosslinking, microcapsules will release cells. Over time, polymer will degrade and cells will produce new tissue

- 1. Bone replacement:
 - Made of poly(propylene fumarate) (PPF) combined with β-TCP particles
 - Seeded with mesenchymal stem cells taken from the patient's bone marrow.
 - N-vinylpyrrolidinone serves as a crosslink and benzoyl peroxide initiates crosslinking upon injection

- 2. Cartilage Replacement:
 - Made of a copolymer containing PPF and poly(ethylene glycol) (PPFco-EG)
 - Seeded with chondrocytes taken from a non-load bearing joint
 - Undergoes the same crosslinking reaction as the bone replacement

- 3. Cell Microcapsules
 - Microcapsules will contain porcine gelatin and DMEM cell culture media
 - Surface will be crosslinked using DSP to prevent reverse gelation of microparticles during PPF crosslinking

- 4. Growth Factors
 - PLGA microparticles containing growth factors will also be suspended in the polymer
 - These will release growth factors slowly throughout tissue regeneration to promote cell growth and activity

Technical Models

- Mathematical modeling of aspects of this procedure will decrease the amount of experimentation needed and decrease the risk associated with lack of knowledge.
- Aspects that can be modeled:
 - Heat Transfer
 - Mechanical Strength / Porosity
 - Polymer Degradation

- When cell suspension polymerizes in vivo, heat is produced.
- This causes the temperature of the polymer construct to increase.
- Excessive temperatures can kill the cells before they can begin to proliferate and create tissue.
- Will increased polymer temperatures allow enough cell survival for tissue growth?

Inside Implant

$$\alpha_1 \frac{\partial T}{\partial t} = \nabla^2 T + \dot{q}(t)$$

Outside Implant

$$\alpha_2 \frac{\partial T}{\partial t} = \nabla^2 T$$

- First attempt: 1-D Analytical Solution
- Solution of inner equation is not consistent with boundary conditions.

- Second Attempt: find 1-D solution numerically using finite differences
- Temperature raises to almost 47°C and stays above 40°C for several hours
 - This would cause significant cell death

- Third Attempt: Find 3-D solution in cylindrical coordinates using finite differences
 - Temperature only increases to 40 C at the Center of the Implant
 - This temperature increase will cause minimal cell death

Comparison between methods

1-D Models do not consider heat lost through the top and bottom of the implant

- Model shows that temperature increase will not cause significant cell death.
- This prediction gives a starting point for experiments in cell seeding.
- The model saves us money and time that would otherwise be used to find these results experimentally

Mechanical Strength

- Proper mechanical strength will allow for better recovery for the patient
- Natural compressive strength
 - Bone ~ 5 MPa

Cartilage ~ 0.4 – 1.4 MPa

- Variables affecting construct strength throughout device life:
 - Cross-linking density
 - Porosity
 - Degradation and cell growth

Porosity

- Void space is necessary to create pathways for nutrient and waste movement.
- Porosity affects compressive strength of the material
 - Percent porosity of material
 - Size and morphology of pores
- Atzeni equation developed for hardened pastes with spherical pores.
 - Empirical constant is necessary

$$\sigma = K \frac{\sigma_0(1-p)}{\sqrt{r_m}}$$

- Natural bone has a compressive strength of 5 MPa.
- Bone substitute could have a porosity over 75% based on this model.

PPF-co-EG Porosity

- Polymer matrix forms a hydrogel, which has natural void space.
 - Dependent on cross-linking density
- Shown to have adequate diffusion of nutrients, waste, and large proteins.
- Diffusion of nutrients and mechanical strength are affected by the cross-linking density of the polymer.

Construct degradation

Time after implantation

- Degradation occurs by hydrolysis of PPF bonds.
- Pseudo-first order kinetics because water concentration is relatively constant.
- Degradation decreases cross-linking density
 - Decreases compressive strength
 - Increases swelling ratio

Degradation Effects

Degradation Time

- As degradation increases, polymer loses strength
 Degradation rate is dependent on initial cross-linking density
- Cell growth must replace degraded polymer to maintain strength.

Modeling

- We now have a better idea of which experiments must be done in order to make this process work.
- Overall, numerical models like this help to reduce cost and more accurately quantify risk...

Risk Analysis

Need for Risk Analysis

- New technologies include an incredible amount of risk
 - 5 of every 5,000 medical technologies that enters the FDA approval process enters human clinical testing.
 - Only 1 of those 5 technologies will eventually be approved for the medical market.
- On average, it takes 15 years for the approval process.
- It takes approximately \$360 million for a new technology to reach the public.

FDA Approval

- Necessary before the use of any medical device.
- Experiments determine the positive and negative affects of the treatment.
 - Lab scale testing
 - Animal testing
 - Human clinical trials
- Application can be filed in a traditional or modular form.

Modular FDA Approval

- Modules are determined based on assessment of needed experiments.
- Request approval at the end of each module
- Failure within a module does not indicate total product failure
 - Data appendices can be sent in after approval was requested.
- Project can be abandoned after failure at any module.

FDA Approval

- Module 1 Laboratory testing
 - Bench scale testing
 - Basic material properties
 - Initial optimization of construct
- Module 2 Non-clinical animal studies
 - Defining surgical procedure
 - Biocompatibility and toxicity studies
 - Further optimization of construct
 - Module 3 Human clinical trials
 - Mechanical strength and integrity
 - Long-term in vivo results

Assessing Pathways

- Each step has an associated time, cost, and probability.
- To assess the FDA process, estimations of where failures will occur must be made.
- Number of failures allowable within a pathway will greatly affect the risk assessment.
- Probabilities of success would increase if
 - Pre-FDA testing is completed
 - More experiments are performed
 - Advance and accurate modeling is available

Pre-FDA Trials

- Reduces the chance of early failure
- Abandon or change project based on results
- Predict necessity of more expensive experiments and optimizations
- Increases accuracy of risk analysis

Business Decisions

First Stage Decisions:	Second Stage Decisions:
Number of experiments	Product price
Number of workers	Advertising Costs
Number of Allowable Failures	Production facility location and size

We will find risk associated with several first stage scenarios – it is assumed that second stage decisions can be made later for optimum performance

Modeling Pathways

- Models can quickly become complicated
- 5,291 total pathways through FDA
 - 2,970 pathways lead to success
 - 2,321 pathways lead to failure
- First stage decisions shape FDA model
- Probabilities, time, and cost are estimated based on all available knowledge.
 - Modeling technical details increases accuracy of the FDA model.

Risk Assessment

- The probability, time until completion, and net present cost for each pathway was calculated
- Scenarios varying by the number of workers and the number of experiments were created
 - 2, 5, or 10 workers
 - 45, 60, or 70 experiments
- Net present worth of the product was calculated to evaluate the possible profit
 - Price and demand must be considered

To know the expected value of each pathway, the profit for each operating year must be estimated.

$$Profit_n = pd_n - IC_nd_n - FC_n$$

IC = Surgery and material cost per implant, **FC** = Fixed annual operating costs

The price and demand are classically related by a simple expression

How do we choose a price?

Less than competitor:

Get the majority of the market

Price: \$15,000

Demand: ~15,000

Profit: ~\$70,000,000

More than competitor:

Get the smaller market share

Price: \$35,000

Demand: ~7,000

Profit: ~\$170,000,000

We will need a more detailed model to find the optimum price

 A more detailed pricing model involves maximizing consumer utility (happiness)
With only one competitor, the utility (U) is:

$$U = d_1^{\alpha} + d_2^{\beta}$$

- $\alpha = f$ (knowledge)
- $\beta = f$ (happiness)

This is maximized subject to two constraints:

$$p_1d_1 + p_2d_2 \le Y$$

Y = Total Consumer Budget

$$d_1 + d_2 \le D$$

This gives two possible equations relating demand and price:

Budget Controlled Solution

$$d_{1} = \frac{\alpha}{\beta} \frac{p_{2}}{p_{1}} \left(\frac{Y - p_{1}d_{1}}{p_{2}} \right)^{1-\beta} d_{1}^{\alpha}$$

Demand Controlled Solution

$$d_1 = \frac{\alpha}{\beta} (D - d_1)^{1 - \beta} d_1^{\alpha}$$

These are both solved for d₁; the lower solution satisfies both constraints.

Estimating α and β :

Knowledge increases gradually until it becomes perfect ($\alpha = 1$)

β is estimated by assuming happiness values and weights for various attributes

$$\beta = \frac{H_2}{H_1} = \frac{\sum w_i y_{2,i}}{\sum w_i y_{1,i}} = 0.8$$

Description	Weight	У 1	<i>Y</i> ₂
Long-term outcome	0.70	1	0.8
Invasiveness	0.15	0.8	0.4
Recovery Time	0.15	0.75	0.65

Estimating Y and D

- Values are assumed from knowledge of the competitor's current market and statistics on the number of people with this kind of knee problem.
 - Y = \$250,000,000 / year
 - D = 15,000 Implants / year

- The demand and the profitability were evaluated for a range of prices.
- When $\alpha = 1$, the maximum profitability was found at:

 $p_1 = \$95,000$

 $d_1 = 2573$ Implants / year

Profit = \$217,000,000 / year

This price was used to find profitability during the first five years

Year 1	Year 2	Year 3	Year 4	Year 5
\$0	-\$500,000	\$600,000	\$217,000,000	\$217,000,000

Risk Curve

These profits during operation give these risk curves for the NPW forty years from now

α (years to reach 1)	5 (50%)	4 (33%)	3 (17%)
β	0.5 (25%)	0.8 (50%)	0.999 (25%)
Y	\$150,000,000 (33%)	\$250,000,000 (33%)	\$400,000,000 (33%)
D	10,000 (33%)	15,000 (33%)	20,000 (33%)

Profitability

- The most profitable price for each scenario, is most strongly dependent on β.
- Changing D values have no effect on profitability; Budget constraint dominates at high prices.
- When products are almost equal (β = 1), most profitable price is competitor's price.
- For low values of β, the most profitable price is surprisingly large - as much as \$590,000!
- We may want to charge lower prices to capture a larger segment of the market.

C

Profitability Conclusions

- This process has the possibility of being remarkably profitable.
- The expected NPW can increase by:
 - Increasing the number of experiments
 - Increasing the number of workers
- The costs associated with these first stage decisions is minimal when compared to the possible gains.
- There are inherent limitations to how much the NPW would be expected to increase.
Conclusions

- Cartilage damage is a problem that may be solved with a tissue engineered solution
- Mathematical modeling can help to guide experimentation and give insight into a process.
- The FDA process can be modeled, with first stage decisions taken into consideration.
- Risk analysis does have some limitations, but is useful in deciding if this procedure is a worthwhile investment.