Solid Oxide Membranes

Brent Shambaugh

Justin Brady
Travis Spain

Overview

- Background Information
- Design
- Components of the System
- Microchannel heat exchanger
- Unsteady-state heat transfer model
- Power Requirements and Supply
- Safety and Controls
- Unit Sizing
- Business Plan
- Happiness models
- Price/demand determination
- Risk Assessment

Users of Oxygen Therapy

- Chronic Obstructive Pulmonary Disease (COPD) sufferers
- Including: emphysema and chronic bronchitis
- Not including asthma sufferers
- ALA estimates sufferers at 30 million ${ }^{1}$
- COPD cannot be reversed ${ }^{1}$
- Over 800,000 Oxygen Therapy Patients

Types of Oxygen Therapy

- Compressed Oxygen
- Liquid Oxygen
- Require Professional to Refill
- Limited by Tank Size
- Oxygen Concentrators
- Very Large; Not Portable
- The Portable LifeStyle by AirSep
- Solid Oxide Membrane

The Oxygen Therapy Market

- According to a Valley Inspired Products, LLC survey of oxygen therapy patients:
- The average patient receives 7 bottles of oxygen per week
- This correlates to a cost of \$300-\$500 per month
- The average patient leaves their home over 5 times per week
- They are away for an average of 3.9 hours

Product Goals

- Portable Oxygen Supply
- 4 Hour Battery Life
- Less than 10 lbs.
- Low Noise Output
- User-Friendly Operation
- Unit Cost of Less than \$6000
- Consumer/Market Analysis

Executive Summary

- Objective: Continue the design of a BICUVOX membrane system for mobile oxygen therapy
- Focus: Business Plan, Electrical System, Safety \& Controls, System Design
- Results: Produces a minimum 5 L/min of 99.9\% Oxygen from 15.2" $\times 9.5^{\prime \prime} \times 12.2^{\prime \prime}$ unit weighing 10 lbs at a selling price of $\$ 5500$

Unit Design

Overall System

Thomas Rotary Air Compressor

- Power Requirement @ 5400 RPM $=2.3 \mathrm{~W}$
- Voltage Requirement $=12 \mathrm{~V}$
- Diameter = 2.25 in .
- Length $=4.45 \mathrm{in}$.
- Weight $=0.55 \mathrm{lbs}$.
- Flow rate $=29.76 \mathrm{~L} / \mathrm{min}$
- Pump Choice
- Oil-less Operation
- Maintenance Free
- Pulsation Free, Low Vibrations

Microchannel Heat Exchangers

Two heat exchangers are used:

- One for Nitrogen and Air
- One for Oxygen and Air

Heat Exchanger Theory

- According to Adams et. al, the limiting hydraulic diameter for application of standard Nusselt Number Correlations such as the Gneielinski, is approximately 1.22 mm
- The diameter of our microchannels are less than 1.22 mm , so new correlations will need to be used

Heat Exchanger Theory

- A new Nusselt Number correlation was given by Choi et. al for flow of nitrogen in microchannels

$$
N u=0.00972 \mathrm{Re}^{1.17} \operatorname{Pr}^{\frac{1}{3}} \quad \mathrm{Re}<2000
$$

Or Wu \& Little:

$$
N u=0.00222 \mathrm{Re}^{1.09} \operatorname{Pr}^{0.4} \quad \mathrm{Re}>3000
$$

Heat Exchanger Theory (cont.)

- The friction factor in microchannels is not well understood, but generally the friction factor is greater than standard correlations
- As a simplification, the traditional fanning friction factor is used to calculate the pressure drop with a correction factor of 1.75
- This correction factor is given by M.J. Kohl to be the highest deviation in the literature

Heat Exchanger Theory (cont.)

- The pressure drop is used to size the heat exchangers
- The total pressure drop of one pass through a heat exchanger is kept below 1 psi to account for other pressure drops in the system
- The area of foil used in the heat exchanger, the diameter of the tubes are minimized while the heat transfer is maximized

Heat Exchanger Theory (cont.)

- The exchangers are sized at steady state using an overall heat exchanger coefficient and bulk properties
- The width and length of the heat exchangers are kept constant at 7 cm during sizing
- Air is diverted by a valve to each of heat exchanger to allow for maximum heat transfer between the streams

Microchannel Heat Exchangers

TO2, in $=831.15 \mathrm{~K}$
Tair, in $=294.35 \mathrm{~K}$
TO2, out $=298.15 \mathrm{~K}$

$$
\text { Tair, out }=831.14 \mathrm{~K}
$$

Number of channels $=315$
Diameter of each channel $=.07 \mathrm{~mm}$
Flow rate air $=5.36 \mathrm{~L} / \mathrm{min}$, Flow rate $02=5 \mathrm{~L} / \mathrm{min}$

Microchannel Heat Exchangers

TN2, in $=831.15 \mathrm{~K}$
Tair, in $=294.35 \mathrm{~K}$
TN2, out $=298.98 \mathrm{~K}$
Tair, out $=831.14 \mathrm{~K}$
Number of channels $=127$
Diameter of each channel $=0.5 \mathrm{~mm}$
Flow rate air $=18.54 \mathrm{~L} / \mathrm{min}$, Flow rate $\mathrm{N} 2=18.8 \mathrm{~L} / \mathrm{min}$

Nichrome Wire Electrodes

Wichrome Resistance Wire

- Diameter $=0.005105 \mathrm{~m}$
- Length $=0.06096 \mathrm{~m}$
- Resistance $=0.0029811$ ohms
- Voltage Drop, at unsteady state $=2.15 \mathrm{~V}$
- Voltage Drop at steady state $=0.042 \mathrm{~V}$
- Time to heat up with air at $298 \mathrm{~K}=1.98 \mathrm{~s}$
- Power Requirements at steady state $=0.61527 \mathrm{~W}$
- Final Wire Temperature $=900 \mathrm{~K}$
- Temperature regulated by the control system

Membranes Considered

- Yttria-Stabilized Zirconia (YSZ)
- Samarium Doped Ceria (SDC)
- Strontium \& Magnesium Doped Lanthanum (LSGM)
- Gadolinium Doped Ceria (GDC)

Membrane Choice

- Bicuvox. 10
- $\mathrm{Bi}_{2} \mathrm{Cu}_{0.1} \mathrm{~V}_{0.9} \mathrm{O}_{5.35}$
- Crystal Structure
- Tetragonal v. Orthorhombic
- $\mathrm{Bi}_{2} \mathrm{O}_{2}{ }^{2+}$ interleaved with anion-deficient perovskite-like sheets $\mathrm{V}_{0.9} \mathrm{Cu}_{0.1} \mathrm{O}_{3.5}$
- Thermal Expansion
- $10^{-5} / \mathrm{K}$

AXO_{3} Structure

Solid Oxide Membranes

- Relatively new technology
- Oxygen conducted through membrane by vacancies
- Oxygen is reduced at cathode to oxygen anion
- Combines at anode to form diatonic Oxygen
- Flux through the membrane

$$
N_{i}=\frac{P_{i}}{l}(\text { driving force })
$$

Membrane Specifications

number of plates	208	source	plates
Temperature	550	source	C
total volumetric flow rate of permeate	5	spec	L/min
molar gas volume (STP)	24.04	calc	L/mol
molar flow rate of permeate/plate	0.00002	calc	$\mathrm{mol} / \mathrm{s} /$ plate
electron stoichiometry	4	source	mol electrons $/ \mathrm{mol} \mathrm{O}_{2}$
Faraday constant	96485	source	$\mathrm{C} / \mathrm{mol}$ electrons
current	6.431	calc	A
current density for BICUVOX. 10	0.75	source	$\mathrm{A} / \mathrm{cm}^{2}$
total plate area required	12.87	calc	cm^{2}
side length of square plates	1.41	calc	in
thickness of plates	0.3	source	cm
air gap height	0.5	source	cm
electrode height	0.2	source	cm
total cell stack height	287.24	calc	cm
number of columns	4	spec	
height per column	6.65	calc	in
electrical potential for each cell	0.057	calc	V
total potential for stack	11.923	calc	V
power required	76.675	calc	W

Boivin et al. Electrode-Electrolyte BIMEVOX System for Moderate Temperature Oxygen Separation

Membrane Stack Arrangement

Electrical System

- Power Sources
- AC Power
- 12 V Lithium Ion Battery Power
- 4 hour battery
- 2 hour recharge
- Voltage is diverted with a voltage regulator to the nichrome wire to allow for a faster heat up time
- The voltage direct towards the feed pumps is compromised, but a flow rate of $14.88 \mathrm{~L} / \mathrm{min}$ for each pump is still achieved

Electrical System (cont.)

- Initially a switching mechanism allows no current to pass across the membranes
- At steady state most of the voltage is fed to the pumps and the membrane

Power Needed

Unit	Wattage	Hours	Watt-Hours
Membrane	76.7		4
Heating Element, Unsteady	29325.54	.00055	16.12905
Heating Element, Steady	0.61	0.166667	0.101667
2 Pumps	4.6		4

Lithium Ion Battery

- Specific Energy $=150 \mathrm{~W}-\mathrm{h} / \mathrm{kg}$
- Energy Density $=400 \mathrm{~W}-\mathrm{h} / \mathrm{L}$
- 341.43 W-h needed by the unit
- Results
- 52.11 in 3 (or $2.75 \times 2 \times 9.5$)
- 5 lbs
- 4 Hour Battery Life
- 2 Hour Recharge

Sealant

- Durabond 950
- High temperature application
- Up to $1200^{\circ} \mathrm{F}$ (922K)
- Aluminum base
- Safe for human use
- Ni, Cr bases carcinogenic
- Bond strength increases with temperature
- Thermal expansion coefficient
- $10^{-5} / \mathrm{K}$

Inner Casing

- Magnesium oxide
- Used to support membrane stack and Insulpor®
0.5 cm thickness
- Safe for Humans
- Thermal expansion coefficient
- $10.8^{-5} / \mathrm{K}$

Insulation

- Insulpor® vacuum insulation
- Use temperature up to $1050^{\circ} \mathrm{C}$
- Thermal Conductivity
- $0.0043 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
- 2.5 in. thickness
- Outside T=77 ${ }^{\circ} \mathrm{F}$
- Membrane Size
- $12.1 \times 9.4 \times 12.1$

Equipment Sizing

Sizes (in inches \& pounds)				
Component	Height	Width/Diameter	Length	Weight
Membrane Stack	12.1	9.4	12.1	2.4
Pump 1		2.25	4.45	0.55
Pump 2		2.25	4.45	0.55
Heat Exchanger - O2	2.756	0.1005	2.756	0.22
Heat Exchanger - LA	2.756	0.0918	2.756	0.22
Battery	2.75	2	9.5	5
	$\mathbf{1 5 . 2}$	$\mathbf{9 . 5}$	$\mathbf{1 2 . 2}$	$\mathbf{9 . 9 4}$

Unit Design

HX

- Dimensions
- Height - 15.2"
- Width - 9.5"
- Length - 12.2"
- Weight
- 9 lbs
- Membrane
- 81\% of Volume
- Battery
- 55% of Weight

3-D View

Panel View

Safety

Issues

- High Temperature of System
- High Temperature Exit Streams
- Low O_{2}

Concentration

- Low Flow in Exit Streams

Solutions

- Insulation \& Casing
- Temperature Sensors \& Alarms
- Concentration Controls
- Flow Controls

Control System

Business Plan

Nature of Business

- Our business will begin as a partnership between Brent Shambaugh and Justin Brady
- For additional funding as we grow, we will seek private investment

Comparison with Competition

AirSep	
Lifestyle	Inogen One
Product	

Avg. Noise (Db)	55	40	13
Power (watts)	35	38	341
weight (lb)	9.75	9.7	9.8
length (ft)	1.36	0.97	1.017
width (ft)	0.60	0.50	0.95
height (ft)	0.46	1.03	1.034
cost \$	3899	5495	5500

Plant Location

- The market for oxygen is considered homogeneous in the United States
- Due to shipping expenses, it would best if we were centrally located
- The location that we have chosen is Denver, Colorado
- According to Forbes magazine, it has one of the lowest tax rates in the nation

Objective

- Investigate how the NPW is affected by demand and price changes of our product
- Investigate the major factors affecting demand
- Consider three different scenarios: an in-car unit, an in-house unit, and a portable unit
- Focus on portable unit

Justification for Portable Unit

- There are only two main competitors in this market, verses a total of four competitors for the in-house unit
- The in-car unit is not practical since it is limited to a car
- Our microchannel heat exchangers allow for the unit to be small. This small size is not needed for an in-house unit

Demand Model

- Governed by two equations:
(equation 1)

$$
\begin{aligned}
& \beta p_{1} d_{1}=\alpha p_{2} d_{2}\left(\frac{d_{1}^{\alpha}}{d_{2}^{\beta}}\right)
\end{aligned} \begin{aligned}
& d_{1}=\text { the demand for our product } \\
& d_{2}=\text { the demand for the competitor's product }
\end{aligned}
$$

$p_{1}=$ the price for our product

$$
p_{1} d_{1}+p_{2} d_{2}=Y
$$

$p_{2}=$ the price for the competitor's product
(equation 2)
$\mathrm{Y}=$ the total money available in the market
$\$ 315 \mathrm{M}$
$\beta=$ the beta function
$\alpha=$ the alpha function

Beta Function

The β value is a ratio which describes how much happier the consumer is with product of interest compared to the competition.

$$
\beta=\frac{H_{c}}{H_{I}}
$$

$\mathrm{H}_{\mathrm{c}}=$ the happiness of the competitor's product $H_{l}=$ the happiness of the product being sold

Constraint: $0<\beta<1$, larger β acceptable with lower selling price

Happiness Determination

From the portable unit:

Happiness vs. Noise

http://www.josaka.com/Content/2000/Decibel-Chart.htm

Happiness Determination

For the Portable Unit:
For noise: $\quad H_{N}=-0.197 N+1$
For power: $\quad H_{p}=-0.0008 P+1$
For weight: $\quad H_{w}=-0.0304 W+1$
For height: $\quad H_{h}=-0.1829 h+1 \quad 100 \%, 2 \mathrm{ft}: 0 \%, 3 \mathrm{zt}$
For width: $\quad H_{w}=-0.4886 W+1 \quad 100 \%,<8$ in : $0 \%, 2 \mathrm{ft}$
For length: $\quad H_{l}=-0.3735 l+1 \quad 0 \%$, 1ft

Happiness Determination

Where:

$$
H_{I}=\sum_{i} w_{i} y_{i}
$$

$w_{i}=$ the weight of each variable
$y_{i}=$ happiness function for each variable

The sum of all weights must equal one

Overall Happiness Function

For the Portable Unit:

$$
\begin{aligned}
& H_{I}=0.3 * H_{N}+0.05 * H_{p}+0.3 * H_{w} \\
& +0.1 * H_{h}+0.1 * H_{w}+0.15 * H_{l}
\end{aligned}
$$

- Beta value $=0.865$

Alpha Function

- The α value is an expression of how well the general public knows product being sold
- It may be expressed in terms of advertising rate and time

Where:

$$
\alpha=\frac{y t}{1+y t}
$$

$y=$ the advertising rate
t = time

Alpha Function (cont.)

Alpha Function vs. Time

Solving the Demand Model

- Solve these two equations simultaneously:

$$
\begin{array}{ll}
\beta p_{1} d_{1}=\alpha p_{2} d_{2}\left(\frac{d_{1}^{\alpha}}{d_{2}^{\beta}}\right) & \text { (equation 1) } \\
p_{1} d_{1}+p_{2} d_{2}=Y & \text { (equation 2) }
\end{array}
$$

- Solve for at constant $\alpha, \beta, Y, p 1$, and p2
- Use one of two methods, an iterative method or a graphical method

Iterative Method for the Demand Model

Rearrange Equation 1 for d_{1} :

$$
d_{1}=\left(\frac{\alpha p_{2}\left(d_{2}\right)^{1-\beta}}{\beta p_{1}}\right)^{\frac{1}{1-\alpha}}
$$

Rearrange Equation 2 for d_{2} :

$$
d_{2}=\frac{Y-p_{1} d_{1}}{p_{2}}
$$

Substitute Equation 2 into 1:

$$
d_{1}=\left(\frac{\alpha p_{2}\left(\frac{Y-p_{1} d_{1}}{p_{2}}\right)^{1-\beta}}{\beta p_{1}}\right)^{\frac{1}{1-\alpha}}
$$

$$
\longrightarrow d_{1}=f\left(d_{1}\right)
$$

Iterate d_{1} for solution

Iterative Method

- Assume that the customer base is captivated to buy the product, so the total demand existing in the market is completely satisfied.
-The total demand is therefore the sum of the demand for the product of interest and the competitors:

$$
D=d_{1}+d_{2}
$$

Iterative Method

- The American Lung Association says that 90,000 people will develop Chronic Obstructive Pulmonary Diseases (COPD) each year, and 15\% of these have the need for oxygen. This gives a total demand of 14,000 .
- In the case that the demand equation gives a demand that exceeds the total demand an alternate form of equation 1 needs to be used.

$$
d_{1}=\left(\frac{\beta}{\alpha}\right)^{1-\alpha}\left(D-d_{1}\right)^{\frac{1-\beta}{1-\alpha}} \text { instead of } \quad d_{1}=\left(\frac{\alpha p_{2}\left(d_{2}\right)^{1-\beta}}{\beta p_{1}}\right)^{\frac{1}{1-\alpha}}
$$

Graphical Method

- Rearrange equations $1 \& 2$ for d_{1} and plot d_{1} vs. d_{2}.
- For total demands greater than the market demand, use the same formula as given for the iterative method

$$
\begin{aligned}
& d_{1}=9.5 \\
& d_{2}=6650.65
\end{aligned}
$$

Iterative vs. Graphical

- When using the development for scenario 1 , the following results are achieved (Selling Price $=\$ 5500, \beta=0.55$):

Results at \$5500

Demand at Different Selling Prices

Note: Production cost per unit $(\beta=0.865, \$ 5500)=\$ 3600$

Time Dependence of Demand

Demand vs. Time

NPW calculation

Determining Equipment Price

Equipment	Use	Size	Price
Storage Tank	Bismuth Oxide	$50 \mathrm{~m}^{3}$	33373
Storage Tank	Vanadium Oxide	$50 \mathrm{~m}^{3}$	33373
Storage Tank	Magnesium Oxide	$50 \mathrm{~m}^{3}$	33373
Conveyor System	Plant Automation	$200 \mathrm{~m}, .4 \mathrm{~m}$ width	254627
Roller Conveyor	Finished Product	$21 \mathrm{~m}, 5 \mathrm{~m}$ width	6180
Mixer, high solids	Bismuth Vanadate	$1.5 \mathrm{~m}^{3}$	12361
Mixer, high solids	MgO Slurry	$1 \mathrm{~m}^{3}$	12361
Welder/ Brazing Equipment	Heat Exchanger		1483265
High Temperature Press	Membrane Sintering	$2000 \mathrm{~kW}, 100 \mathrm{Mpa}$	741633
High Temperature Press	Mgo Sintering	$2000 \mathrm{~kW}, 100 \mathrm{Mpa}$	741633
High precision cutter	Copper Cutting	Rotary cutter 10kg/s	2224898
Oven	Sealant Annealing	$1 \mathrm{~m}^{3}$	61803
Grinder 100 mesh	Uniform Particle Size	$1.3 \mathrm{~kg} / \mathrm{s}$	282202
Automation Equipment	Plant Automation		7416327

Capital Investment

- Based on percent of purchased equipment

Based on Table 6-9
Plant Design and Economics
Peters, Timmerhaus \& West

NPW Beta Dependence

Advertising correction:
Alpha constraint, $y=5$
Cost $=T P C+\left(\frac{y}{100}\right) * T P C$

NPW vs. Selling Price

Properties of Acoustiblok

- Thickness = 0.11 inches
- Weight/Sq. Ft.
$=1 \mathrm{lb}$
- Estimate = \$10/Sq ft.

Optimal Design

Avg. Noise (Db) 13
Power (W) 341
weight (lb) 9.94
length (ft) 1.017
width (ft) 0.95
height (ft) 1.034
cost \$ 5500

B-value: 0.75

Optimal Design (cont.)

Break Even Analysis

Optimum Selling Price

Apha vs. Demand at Beta $=0.72$

Conclusions

- Selling Price $\$ 5500$
- Maximum Selling Price $\sim \$ 12000$
- NPW of 3×10^{6}
- Min. Production rate of 4000 units/yr
- Economic Model is not very efficient, and does not consider advertising costs

Any Questions?

NPW as a Function of Advertising Rate

Effect of Selling Price with Advertising

$$
\text { Cost }=T P C+\left(\frac{y}{100}\right) * T P C
$$

Pump Performance

Output Pressure vs. Flowrate

Compressor Performance LPM @ PSI	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1 . 5}$	$\mathbf{3}$	$\mathbf{5}$
50316	20	18.5	17	14.5	4.5
Maximum Pressure (PS)	Continuous	Intermittent	Restart		
50316	4.4	11.6	0		

Unsteady State Assumptions

- During the time that the nichrome wire is heating up, there is negligible deviation of the bulk air temperature from the ambient
- The time for the system to heat up is limited by the time for the heat exchangers to reach steady state

Unsteady State Heat Transfer

- Assumed
- "Plug Flow"
- Heat is not transferred from exit of wire to beginning of HX
- Instantaneous wire heating
- Space-time of .52 s
- Pulsed heating model
- Model does not predict convergence.

Tetragonal v. Orthorhombic

- Tetragonal
- $a=b \neq c$
- $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$
- Orthorhombic
- $\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$
- $\alpha=\beta=\gamma=90^{\circ}$

Membrane Stack

Specifications

$$
\begin{aligned}
& I_{m}=\frac{4 Q F}{n} \quad \text { (Current) } \\
& E_{M}=\frac{R T}{z F} \ln \frac{y_{O_{2}, h}}{y_{O_{2}, l}} \quad \text { (Voltage) } \\
& P_{M}=E_{M} \times I_{M} \quad \text { (Wattage) }
\end{aligned}
$$

number of plates	208	plates
Temperature	585	C
total volumetric flow rate of permeate	5	$\mathrm{~L} / \mathrm{min}$
molar gas volume (STP)	24.04	$\mathrm{~L} / \mathrm{mol}$
molar flow rate of permeate/plate	0.00002	mol/s/plate
electron stoichiometry	4	mol electrons/mol O_{2}
Faraday constant	96485	$\mathrm{C} / \mathrm{mol}$ electrons
Current	6.431	A
current density for BICUV0X.10	0.75	$\mathrm{~A} / \mathrm{cm}^{2}$
total plate area required	9	cm
side length of square plates	3	cm
thickness of plates	0.38	cm
air gap height	0.4	cm
electrode height	0.2	cm
total cell stack height	287.24	cm
number of columns	8	
height per column	14.14	in
total potential for stack	11.923	V
power required	76.675	W
oxygen recovery from feed	0.80	$\%$

Calculations				$\begin{gathered} \text { Cell } \\ \hline \text { B7 } \end{gathered}$	Formula
number of plates	208	source	plates		
Temperature	550	source	C	B8	
total volumetric flow rate of permeate	5	spec	L/min	B9	
molar gas volume (STP)	24.04	calc	L/mol	B10	
molar flow rate of permeate/plate	0.00002	calc	$\mathrm{mol} / \mathrm{s} /$ plate	B11	B9/B10/60/B7
electron stoichiometry	4	source	mol electrons/mol O_{2}	B12	
Faraday constant	96485	source	C/mol electrons	B13	
current	6.431	calc	A	B14	B11*B12*B13
current density for BICUVOX. 10	0.75	source	$\mathrm{A} / \mathrm{cm}^{2}$	B15	
total plate area required	9	calc	cm^{2}	B16	B14/B15
side length of square plates	3.00	calc	cm	B17	SQRT(B16)
thickness of plates	0.38	source	cm	B18	
air gap height	0.40	source	cm	B19	
electrode height	0.2	source	cm	B20	
total cell stack height	287.24	calc	cm	B21	B7*B18+(B7+1)*B20+2*B7*B19
number of columns	4	spec		B22	
height per column	28.27	calc	in	B23	B21/(B22*2.54)
electrical potential for each cell	0.055	calc	V	B27	8.314*(B8+273)/2/B13*LN(0.99/0.2 1)
total potential for stack	11.436	calc	V	B28	B27*B7
power required	73.548	calc	W	B29	B28*B14

