Solid Oxide Membranes

Brent Shambaugh
Justin Brady
Travis Spain

Overview

- Background Information
- Design
 - Components of the System
 - Microchannel heat exchanger
 - Unsteady-state heat transfer model
 - Power Requirements and Supply
 - Safety and Controls
 - Unit Sizing
- Business Plan
 - Happiness models
 - Price/demand determination
 - Risk Assessment

Users of Oxygen Therapy

- Chronic Obstructive Pulmonary Disease (COPD) sufferers
 - Including: emphysema and chronic bronchitis
 - Not including asthma sufferers
- ALA estimates sufferers at 30 million¹
- COPD cannot be reversed¹
- Over 800,000 Oxygen Therapy Patients

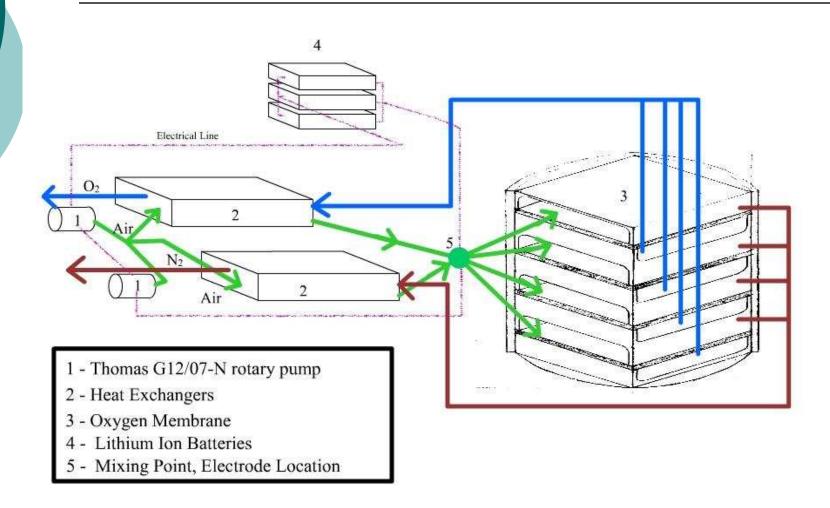
Types of Oxygen Therapy

- Compressed Oxygen
- Liquid Oxygen
 - Require Professional to Refill
 - Limited by Tank Size
- Oxygen Concentrators
 - Very Large; Not Portable
 - The Portable LifeStyle by AirSep
- Solid Oxide Membrane

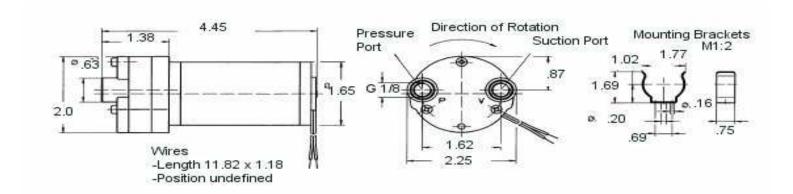
The Oxygen Therapy Market

- According to a Valley Inspired Products,
 LLC survey of oxygen therapy patients:
- The average patient receives 7 bottles of oxygen per week
- This correlates to a cost of \$300-\$500 per month
- The average patient leaves their home over 5 times per week
- They are away for an average of 3.9 hours

Product Goals


- Portable Oxygen Supply
- 4 Hour Battery Life
- Less than 10 lbs.
- Low Noise Output
- User-Friendly Operation
- Unit Cost of Less than \$6000
- Consumer/Market Analysis

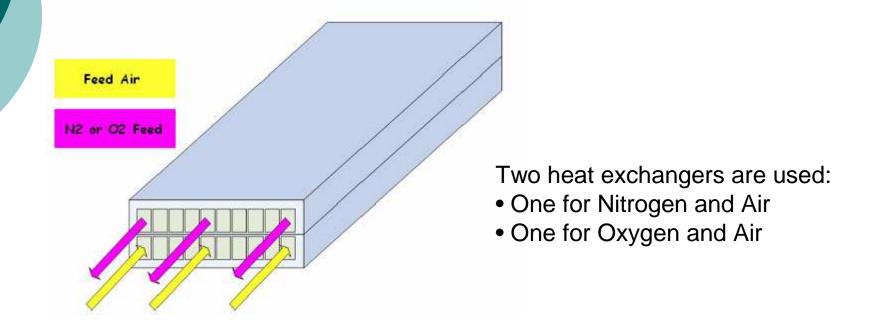
Executive Summary


- Objective: Continue the design of a BICUVOX membrane system for mobile oxygen therapy
- Focus: Business Plan, Electrical System, Safety & Controls, System Design
- Results: Produces a minimum 5
 L/min of 99.9% Oxygen from 15.2"
 x 9.5" x 12.2" unit weighing 10 lbs at a selling price of \$5500

Unit Design

Overall System

Thomas Rotary Air Compressor



- Power Requirement @ 5400RPM = 2.3 W
- Voltage Requirement = 12 V
- Diameter = 2.25 in.
- Length = 4.45 in.
- \circ Weight = 0.55 lbs.

- Flow rate = 29.76 L/min
- Pump Choice
 - Oil-less Operation
 - Maintenance Free
 - Pulsation Free, Low Vibrations

Source: Gardner Denver component Database

Microchannel Heat Exchangers

Heat Exchanger Theory

- According to Adams et. al, the limiting hydraulic diameter for application of standard Nusselt Number Correlations such as the Gneielinski, is approximately 1.22mm
- The diameter of our microchannels are less than 1.22mm, so new correlations will need to be used

Heat Exchanger Theory

 A new Nusselt Number correlation was given by Choi et. al for flow of nitrogen in microchannels

$$Nu = 0.00972 \text{Re}^{1.17} \text{Pr}^{\frac{1}{3}}$$
 Re < 2000

Or Wu & Little:

$$Nu = 0.00222 \,\mathrm{Re}^{1.09} \,\mathrm{Pr}^{0.4}$$
 Re > 3000

Heat Exchanger Theory (cont.)

- The friction factor in microchannels is not well understood, but generally the friction factor is greater than standard correlations
- As a simplification, the traditional fanning friction factor is used to calculate the pressure drop with a correction factor of 1.75
- This correction factor is given by M.J. Kohl to be the highest deviation in the literature


Heat Exchanger Theory (cont.)

- The pressure drop is used to size the heat exchangers
- The total pressure drop of one pass through a heat exchanger is kept below 1psi to account for other pressure drops in the system
- The area of foil used in the heat exchanger, the diameter of the tubes are minimized while the heat transfer is maximized

Heat Exchanger Theory (cont.)

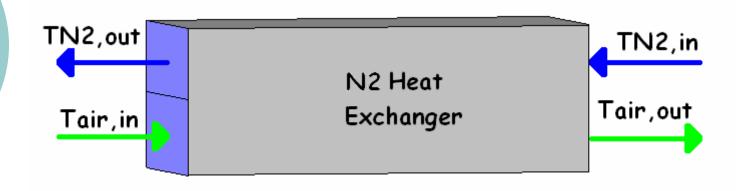
- The exchangers are sized at steady state using an overall heat exchanger coefficient and bulk properties
- The width and length of the heat exchangers are kept constant at 7cm during sizing
- Air is diverted by a valve to each of heat exchanger to allow for maximum heat transfer between the streams

Microchannel Heat Exchangers

T02, in = 831.15K

T02, out = 298.15K

Tair, in = 294.35K


Tair, out = 831.14K

Number of channels = 315

Diameter of each channel = .07mm

Flow rate air = 5.36 L/min, Flow rate 02 = 5 L/min

Microchannel Heat Exchangers

TN2, in = 831.15K

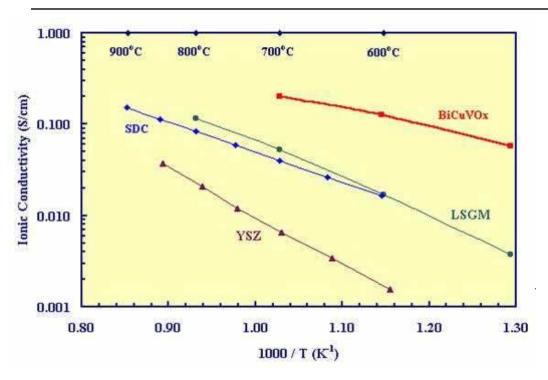
TN2, out = 298.98K

Tair, in = 294.35K

Tair, out = 831.14K

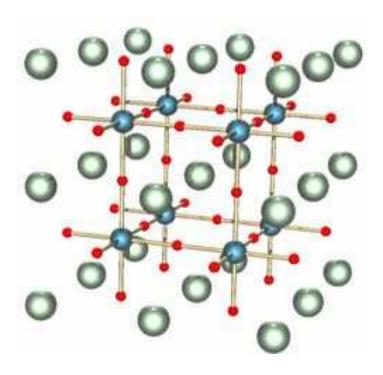
Number of channels = 127

Diameter of each channel = 0.5mm Flow rate air = 18.54 L/min, Flow rate N2 = 18.8 L/min


Nichrome Wire Electrodes

Nichrome Resistance Wire

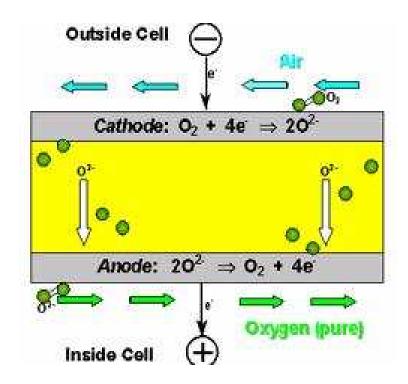
- Diameter = 0.005105 m
- \circ Length = 0.06096 m
- o Resistance = 0.0029811 ohms
- Voltage Drop, at unsteady state = 2.15 V
- Voltage Drop at steady state = 0.042 V
- Time to heat up with air at 298K = 1.98 s
- Power Requirements at steady state = 0.61527 W
- Final Wire Temperature = 900K
- Temperature regulated by the control system


Membranes Considered

- Yttria-Stabilized Zirconia (YSZ)
- Samarium Doped Ceria (SDC)
- Strontium & Magnesium Doped Lanthanum (LSGM)
- Gadolinium Doped Ceria (GDC)

Membrane Choice

- o Bicuvox.10
 - $Bi_2Cu_{0.1}V_{0.9}O_{5.35}$
- Crystal Structure
 - Tetragonal v.
 Orthorhombic
 - Bi₂O₂²⁺ interleaved with anion-deficient perovskite-like sheets V_{0.9}Cu_{0.1}O_{3.5}
- Thermal Expansion
 - 10⁻⁵/K

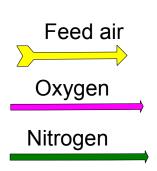


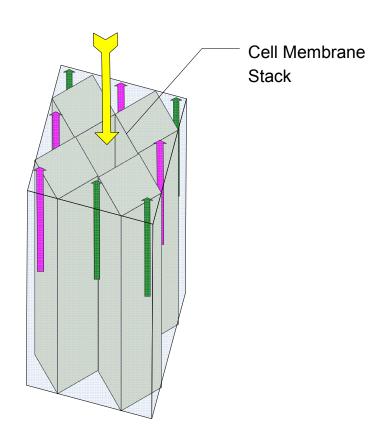
AXO₃ Structure

Solid Oxide Membranes

- Relatively new technology
- Oxygen conducted through membrane by vacancies
- Oxygen is reduced at cathode to oxygen anion
- Combines at anode to form diatonic Oxygen
- Flux through the membrane

$$N_i = \frac{P_i}{l}(driving \ force)$$




Membrane Specifications

number of plates	208	source	plates		
Temperature	550	source	С		
total volumetric flow rate of permeate	5	spec	L/min		
molar gas volume (STP)	24.04	calc	L/mol		
molar flow rate of permeate/plate	0.00002	calc	mol/s/plate		
electron stoichiometry	4	source	mol electrons/mol O ₂		
Faraday constant	96485	source	C/mol electrons		
current	6.431	calc	A		
current density for BICUVOX.10	0.75	source	A/cm ²		
total plate area required	12.87	calc	cm ²		
side length of square plates	1.41	calc	in		
thickness of plates	0.3	source	cm		
air gap height	0.5	source	cm		
electrode height	0.2	source	cm		
total cell stack height	287.24	calc	cm		
number of columns	4	spec			
height per column	6.65	calc	in		
electrical potential for each cell	0.057	calc	V		
total potential for stack	11.923	calc	V		
power required	76.675	calc	W		

Boivin et al. Electrode-Electrolyte BIMEVOX System for Moderate Temperature Oxygen Separation

Membrane Stack Arrangement

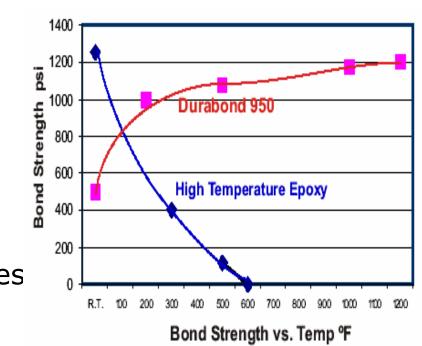
Electrical System

- Power Sources
 - AC Power
 - 12 V Lithium Ion Battery Power
 - 4 hour battery
 - o 2 hour recharge
- Voltage is diverted with a voltage regulator to the nichrome wire to allow for a faster heat up time
- The voltage direct towards the feed pumps is compromised, but a flow rate of 14.88 L/min for each pump is still achieved

Electrical System (cont.)

- Initially a switching mechanism allows no current to pass across the membranes
- At steady state most of the voltage is fed to the pumps and the membrane

Power Needed

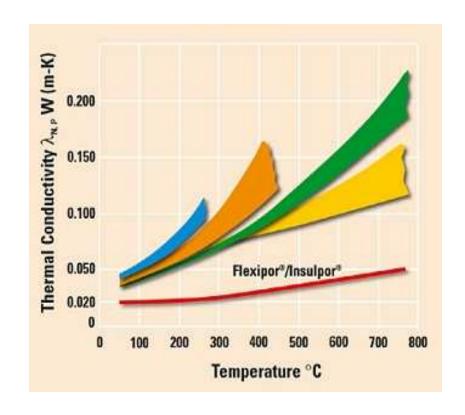

Unit	Wattage	Hours	Watt-Hours			
Membrane	76.7	4	306.8			
Heating Element, Unsteady	29325.54	.00055	16.12905			
Heating Element, Steady	0.61	0.166667	0.101667			
2 Pumps	4.6	4	18.4			
Total Watt-Hours 341.4307						

Lithium Ion Battery

- Specific Energy = 150 W-h/kg
- Energy Density = 400 W-h/L
- o 341.43 W-h needed by the unit
- Results
 - 52.11 in³ (or 2.75 x 2 x 9.5)
 - 5 lbs
- 4 Hour Battery Life
- 2 Hour Recharge

Sealant

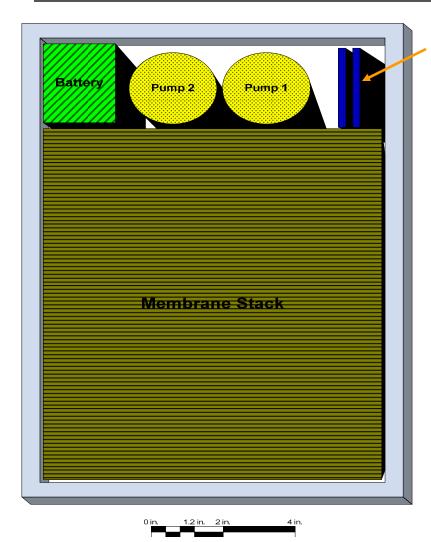
- Durabond 950
- High temperature application
 - Up to 1200°F (922K)
- Aluminum base
 - Safe for human use
 - Ni, Cr bases carcinogenic
- Bond strength increases with temperature
- Thermal expansion coefficient
 - 10⁻⁵/K



Inner Casing

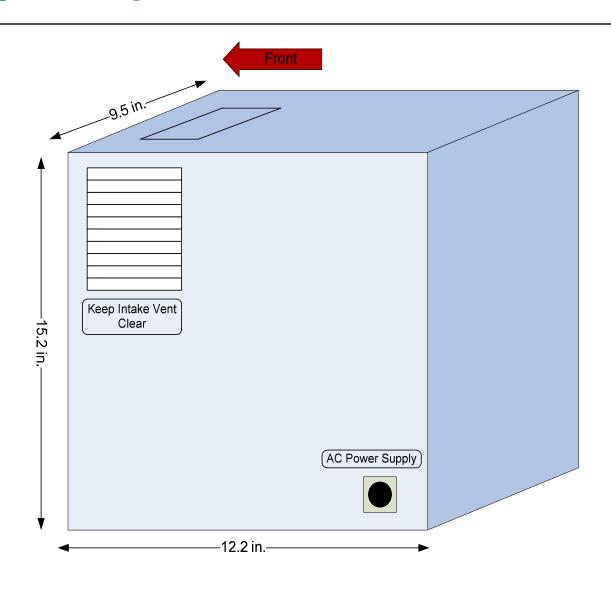
- Magnesium oxide
- Used to support membrane stack and Insulpor[©]
- .5 cm thickness
- Safe for Humans
- Thermal expansion coefficient
 - 10.8⁻⁵/K

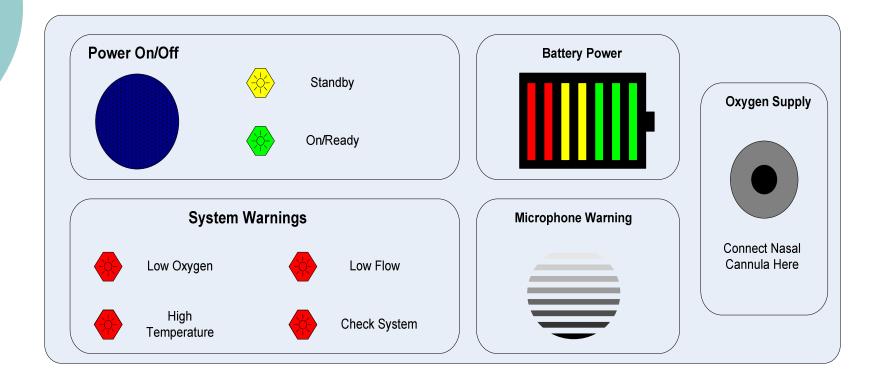
Insulation


- Insulpor[©] vacuum insulation
- Use temperature up to 1050°C
- Thermal Conductivity
 - 0.0043 W/m²K
- o 2.5 in. thickness
 - Outside T=77°F
- Membrane Size
 - 12.1 x 9.4 x 12.1

Equipment Sizing

Sizes (in inches & pounds)							
Component	Height	Width/Diameter	Length	Weight			
Membrane Stack	12.1	9.4	12.1	2.4			
Pump 1		2.25	4.45	0.55			
Pump 2		2.25	4.45	0.55			
Heat Exchanger – O2	2.756	0.1005	2.756	0.22			
Heat Exchanger - LA	2.756	0.0918	2.756	0.22			
Battery	2.75	2	9.5	5			
Final Size	15.2	9.5	12.2	9.94			


Unit Design

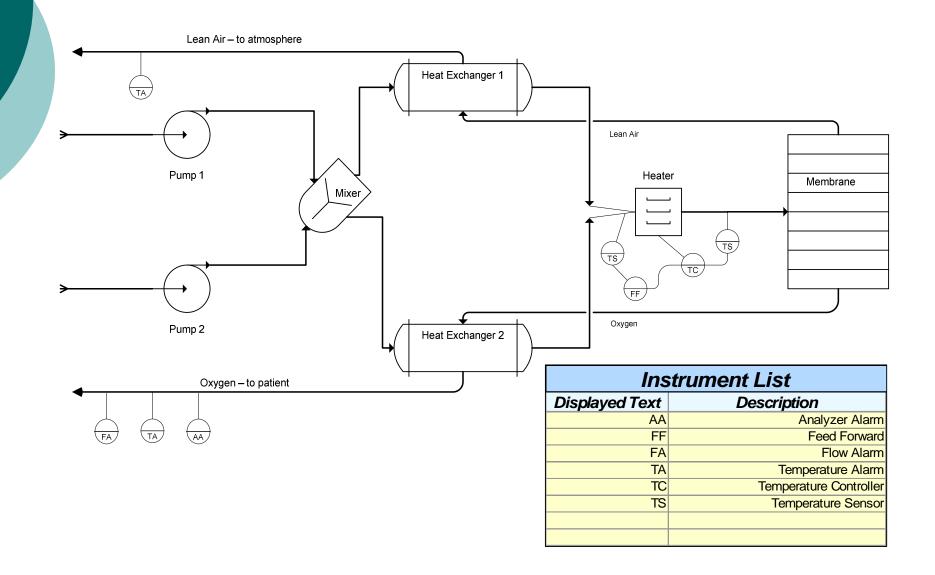

HX

- Dimensions
 - Height 15.2"
 - Width 9.5"
 - Length 12.2"
- Weight
 - 9 lbs
- Membrane
 - 81% of Volume
- Battery
 - 55% of Weight

3-D View

Panel View

Safety


Issues

- High Temperature of System
- High TemperatureExit Streams
- Low O₂
 Concentration
- Low Flow in ExitStreams

Solutions

- Insulation & Casing
- TemperatureSensors & Alarms
- ConcentrationControls
- Flow Controls

Control System

Business Plan

Nature of Business

- Our business will begin as a partnership between Brent Shambaugh and Justin Brady
- For additional funding as we grow, we will seek private investment

Comparison with Competition

	AirSep Lifestyle	Inogen One	Our Product
Avg. Noise (Db)	55	40	13
Power (watts)	35	38	341
weight (lb)	9.75	9.7	9.8
length (ft)	1.36	0.97	1.017
width (ft)	0.60	0.50	0.95
height (ft)	0.46	1.03	1.034
cost \$	3899	5495	5500

- The market for oxygen is considered homogeneous in the United States
- Due to shipping expenses, it would best if we were centrally located
- The location that we have chosen is Denver, Colorado
 - According to Forbes magazine, it has one of the lowest tax rates in the nation

Objective

- Investigate how the NPW is affected by demand and price changes of our product
- Investigate the major factors affecting demand
- Consider three different scenarios: an in-car unit, an in-house unit, and a portable unit
- Focus on portable unit

Justification for Portable Unit

- There are only two main competitors in this market, verses a total of four competitors for the in-house unit
- The in-car unit is not practical since it is limited to a car
- Our microchannel heat exchangers allow for the unit to be small. This small size is not needed for an in-house unit

Demand Model

Governed by two equations:

$$\beta p_1 d_1 = \alpha p_2 d_2 \left(\frac{d_1^{\alpha}}{d_2^{\beta}} \right)$$
 d₁= the demand for our product d₂ = the demand for the competitor's product

(equation 1)

 p_1 = the price for our product

$$p_1 d_1 + p_2 d_2 = Y$$

 p_2 = the price for the competitor's product

(equation 2)

Y = the total money available in the market \$315 M

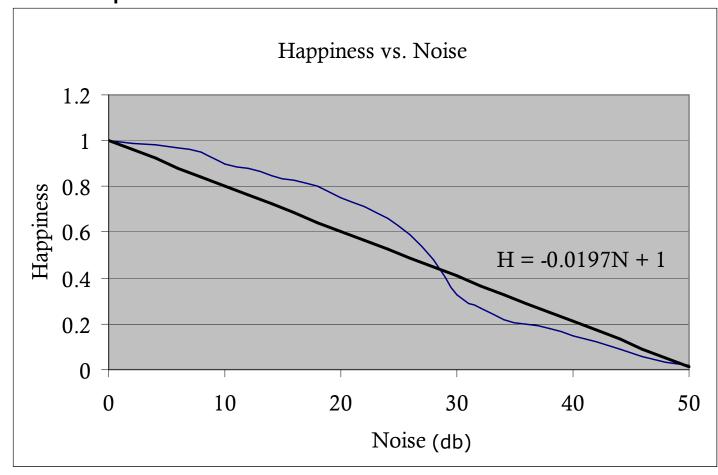
 β = the beta function

 α = the alpha function

Beta Function

The β value is a ratio which describes how much happier the consumer is with product of interest compared to the competition.

 $\beta = \frac{H_c}{H_I}$


 H_c = the happiness of the competitor's product H_l = the happiness of the product being sold

Constraint: $0 < \beta < 1$, larger β acceptable with lower selling price

Happiness Determination

From the portable unit:

http://www.josaka.com/Content/2000/Decibel-Chart.htm

Happiness Determination

For the Portable Unit:

For noise: $H_N = -0.197N + 1$

For power: $H_p = -0.0008P + 1$

For weight: $H_w = -0.0304W + 1$

For height: $H_h = -0.1829h + 1$ 100%, 2ft :0%, 3ft

For width: $H_w = -0.4886W + 1$ 100%, <8in: 0%, 2ft

For length: $H_l = -0.3735l + 1$ 0%, 1ft

Happiness Determination

$$H_I = \sum_i w_i y_i$$

Where:

 w_i = the weight of each variable y_i = happiness function for each variable

The sum of all weights must equal one

Overall Happiness Function

For the Portable Unit:

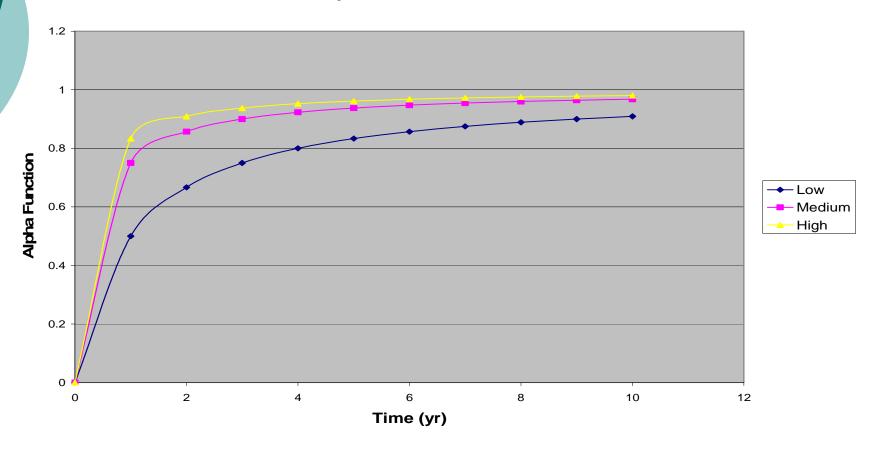
$$H_I = 0.3 * H_N + 0.05 * H_p + 0.3 * H_w$$

+ $0.1 * H_h + 0.1 * H_w + 0.15 * H_l$

•Beta value = 0.865

Alpha Function

- The α value is an expression of how well the general public knows product being sold
- It may be expressed in terms of advertising rate and time


$$\alpha = \frac{yt}{1 + yt}$$

Where:

y = the advertising ratet = time

Alpha Function (cont.)

Alpha Function vs. Time

Solving the Demand Model

Solve these two equations simultaneously:

$$\beta p_1 d_1 = \alpha p_2 d_2 \left(\frac{d_1^{\alpha}}{d_2^{\beta}} \right) \qquad \text{(equation 1)}$$

$$p_1 d_1 + p_2 d_2 = Y \qquad \text{(equation 2)}$$

- Solve for at constant α, β, Y, p1, and p2
- Use one of two methods, an iterative method or a graphical method

Iterative Method for the Demand Model

Rearrange Equation 1 for d₁:

$$d_1 = \left(\frac{\alpha p_2 (d_2)^{1-\beta}}{\beta p_1}\right)^{\frac{1}{1-\alpha}}$$
Rearrange Equation 2 for d₂:
$$d_2 = \frac{Y - p_1 d_1}{p_2}$$

$$d_2 = \frac{Y - p_1 d_1}{p_2}$$

Substitute Equation 2 into 1:

$$d_1 = \left(\frac{\alpha p_2 \left(\frac{Y - p_1 d_1}{p_2}\right)^{1 - \beta}}{\beta p_1}\right)^{\frac{1}{1 - \alpha}}$$

$$d_1 = f(d_1)$$
Iterate d_1 for solution

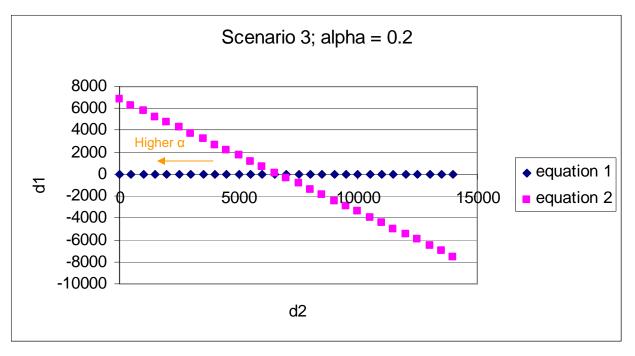
Iterative Method

- Assume that the customer base is captivated to buy the product, so the total demand existing in the market is completely satisfied.
- The total demand is therefore the sum of the demand for the product of interest and the competitors:

$$D = d_1 + d_2$$

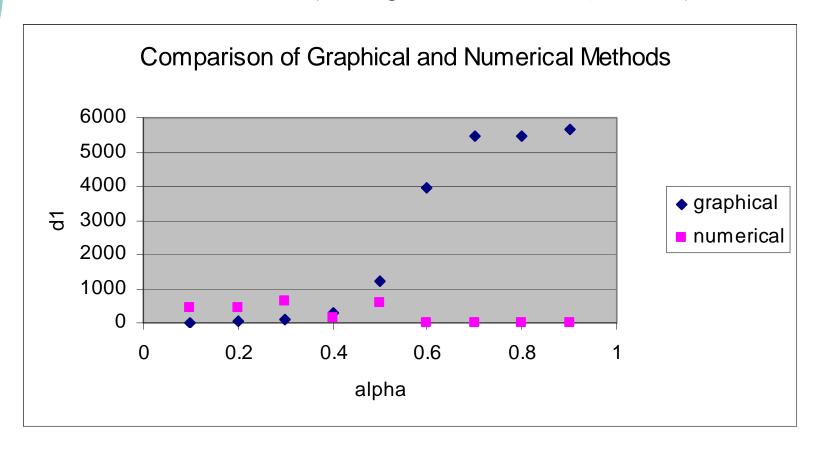
Iterative Method

- The American Lung Association says that 90,000 people will develop Chronic Obstructive Pulmonary Diseases (COPD) each year, and 15% of these have the need for oxygen. This gives a total demand of 14,000.
- In the case that the demand equation gives a demand that exceeds the total demand an alternate form of equation 1 needs to be used.

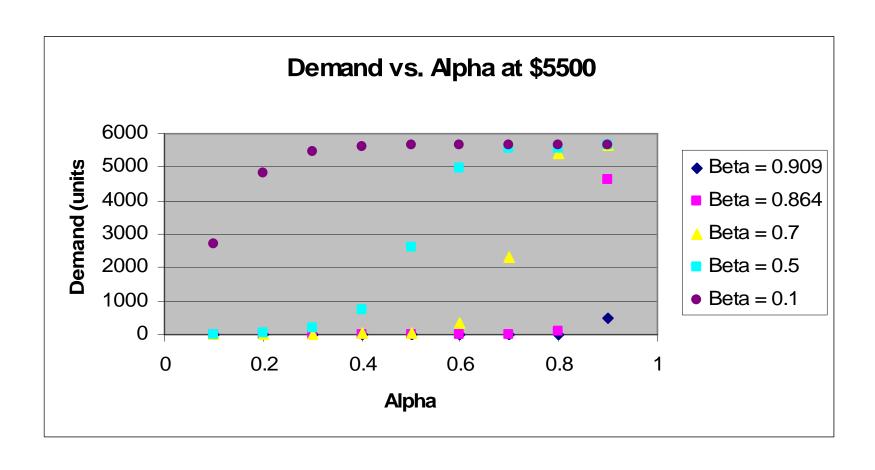

$$d_1 = \left(\frac{\beta}{\alpha}\right)^{1-\alpha} \left(D - d_1\right)^{\frac{1-\beta}{1-\alpha}} \quad \text{instead of} \quad d_1 = \left(\frac{\alpha p_2(d_2)^{1-\beta}}{\beta p_1}\right)^{\frac{1}{1-\alpha}}$$

Graphical Method

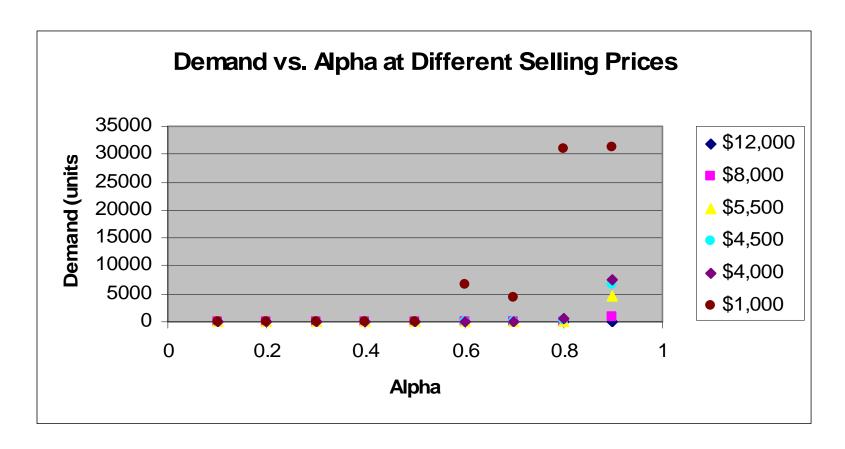
- Rearrange equations 1 & 2 for d₁ and plot d₁
 vs. d₂.
- For total demands greater than the market demand, use the same formula as given for the iterative method


$$d_1 = 9.5$$

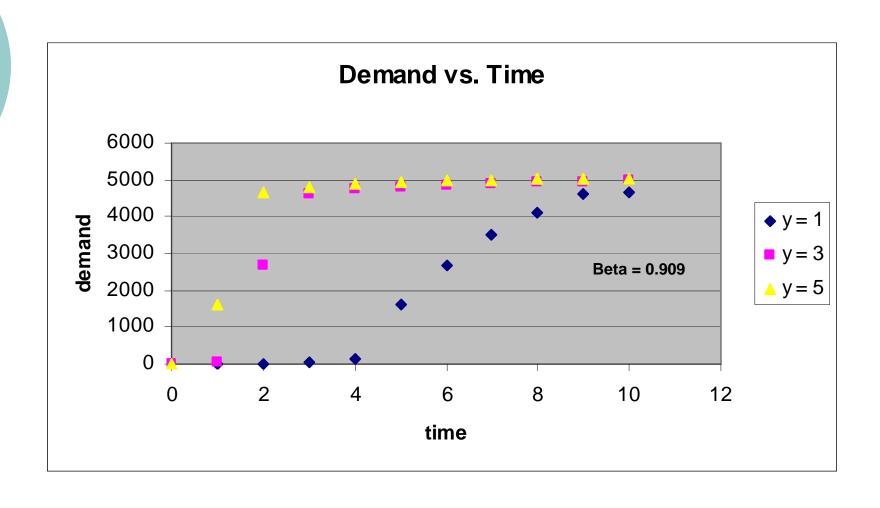
$$d_2 = 6650.65$$



Iterative vs. Graphical


• When using the development for scenario 1, the following results are achieved (Selling Price = \$5500, β = 0.55):

Results at \$5500



Demand at Different Selling Prices

Note: Production cost per unit (β =0.865,\$5500) = \$3600

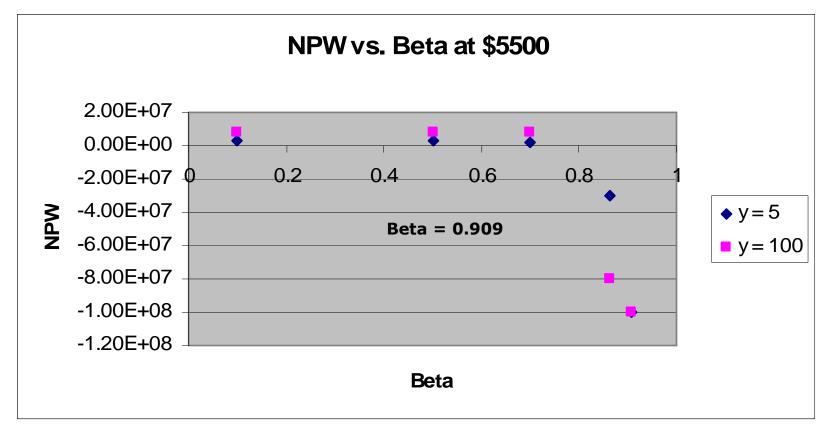
Time Dependence of Demand

NPW calculation

							P2=	2.16E+03	P1=	8.E+03	H2/H1=	5.00E+00
Manufacturing Heat exchangers only			D=	1.40E+04	i=	8.00E-02	у	3.00E+00				
Year	β(t,F	l)	α(y,t)	Demand	Sales	Product Cost	Gross Earnings	Depreciation	Taxes	Net Profit	Cash Flow	Cf _i /(1+i) ^k
	1	0.75	0.83	3.E+03	2.65E+07	1.85E+07	8.08E+06	5.55E+06	2.83E+06	-2.92E+05	5.25E+06	4.86E+06
	2	0.75	0.91	4.E+03	3.13E+07	1.89E+07	1.24E+07	5.55E+06	4.33E+06	2.49E+06	8.04E+06	6.89E+06
	3	0.75	0.94	4.E+03	3.23E+07	1.90E+07	1.33E+07	5.55E+06	4.64E+06	3.07E+06	8.61E+06	6.84E+06
	4	0.75	0.95	4.E+03	3.28E+07	1.90E+07	1.37E+07	5.55E+06	4.80E+06	3.37E+06	8.92E+06	6.55E+06
	5	0.75	0.96	4.E+03	3.31E+07	1.91E+07	1.40E+07	5.55E+06	4.90E+06	3.56E+06	9.10E+06	6.19E+06
	6	0.75	0.97	4.E+03	3.33E+07	1.91E+07	1.42E+07	5.55E+06	4.97E+06	3.68E+06	9.23E+06	5.81E+06
	7	0.75	0.97	4.E+03	3.34E+07	1.91E+07	1.43E+07	5.55E+06	5.02E+06	3.77E+06	9.32E+06	5.44E+06
	8	0.75	0.98	4.E+03	3.36E+07	1.91E+07	1.44E+07	5.55E+06	5.05E+06	3.84E+06	9.39E+06	5.07E+06
	9	0.75	0.98	4.E+03	3.37E+07	1.91E+07	1.45E+07	5.55E+06	5.08E+06	3.89E+06	9.44E+06	4.72E+06
	10	0.75	0.98	4.E+03	3.37E+07	1.91E+07	1.46E+07	5.55E+06	5.11E+06	3.94E+06	9.48E+06	4.39E+06
											NPW=	6.E+06

Determining Equipment Price

Equipment	Use	Size	Price
Storage Tank	Bismuth Oxide	50 m ³	33373
Storage Tank	V anadium Oxide	50 m ³	33373
Storage Tank	Magnesium Oxide	50 m ³	33373
Conveyor System	Plant Automation	200 m, .4 m width	254627
Roller Conveyor	Finished Product	21 m, .5 m width	6180
Mixer, high solids	Bismuth Vanadate	1.5 m ³	12361
Mixer, high solids	MgO Slurry	1 m ³	12361
Welder/Brazing Equipment	Heat Exchanger		1483265
High Temperature Press	Membrane Sintering	2000 kW, 100 Mpa	741633
High Temperature Press	Mgo Sintering	2000 kW, 100 Mpa	741633
High precision cutter	Copper Cutting	Rotary cutter 10kg/s	2224898
Oven	Sealant Annealing	$1\mathrm{m}^3$	61803
Grinder 100 mesh	Uniform Particle Size	1.3 kg/s	282202
Automation Equipment	Plant Automation		7416327
		Equipment Price	13337409

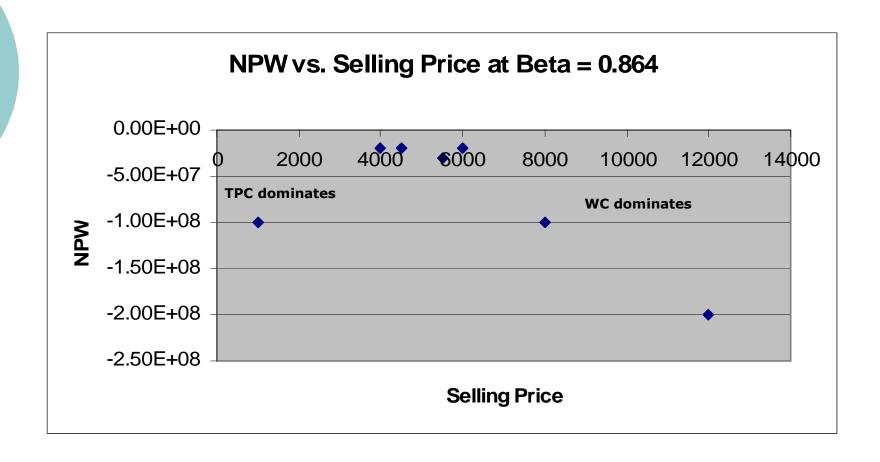

Capital Investment

Based on percent of purchased equipment

0.44	N. (0 !: 1		A
Cost Item	Measurment Criteria	1	Amount
Direct Costs			
Purchased equipment	10	α	13337409
Installation	4	45	6001834
Instrumentation (installed)	•	18	2400734
Piping	•	16	2133985
Bectrical systems (installed)	Changed value	10	1333741
Buildings (including services)		38	9069438
Yard improvements	•	15	2000611
Service facilities	4	40	5334964
Total Direct	Cost		41612717
Indirect Costs			
Engineering and Supervision		33	4401345
Construction expenses	(39	5201590
Legal expenses		4	533496
Contractor's fee	•	17	2267360
Contingency		35	4668093
Total Indired	t Cost		17071884
FCI	4	40	58684600
Working Capital	-	78	10403179
та	5′	18	69087779

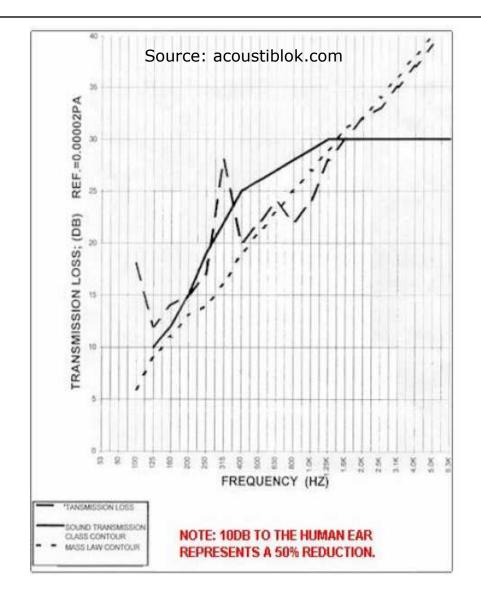
Based on Table 6-9 Plant Design and Economics Peters, Timmerhaus & West

NPW Beta Dependence



Advertising correction:

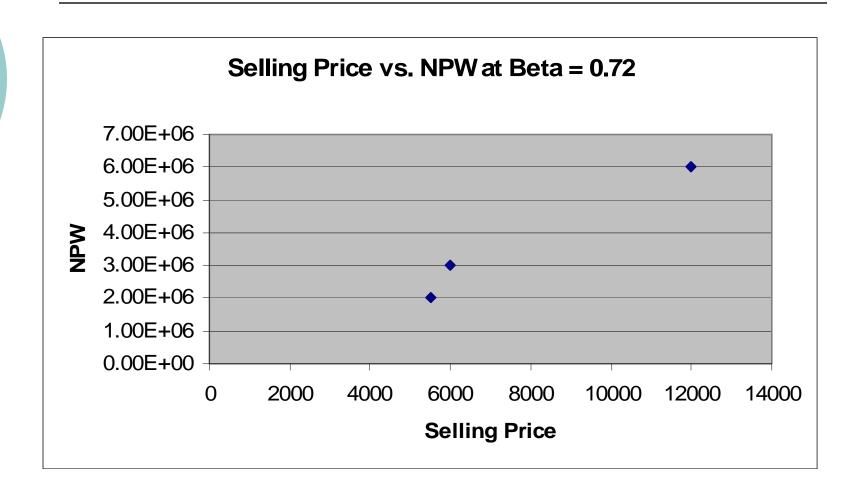
$$Cost = TPC + \left(\frac{y}{100}\right) * TPC$$


Alpha constraint, y = 5

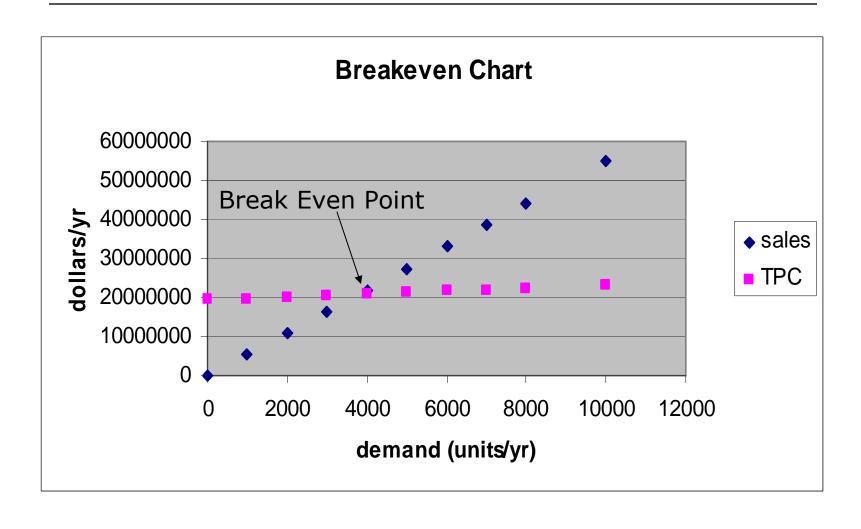
NPW vs. Selling Price

Properties of Acoustiblok

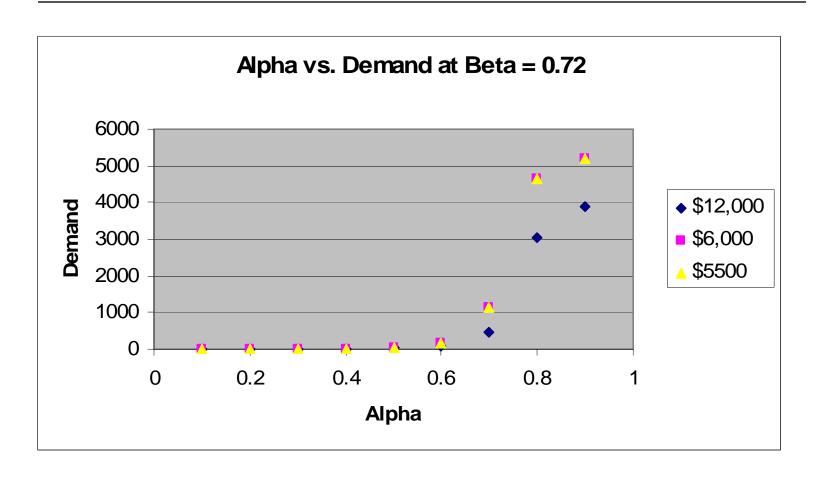
- Thickness =0.11 inches
- Weight/Sq. Ft.= 1 lb
- Estimate = \$10/Sq ft.



Optimal Design

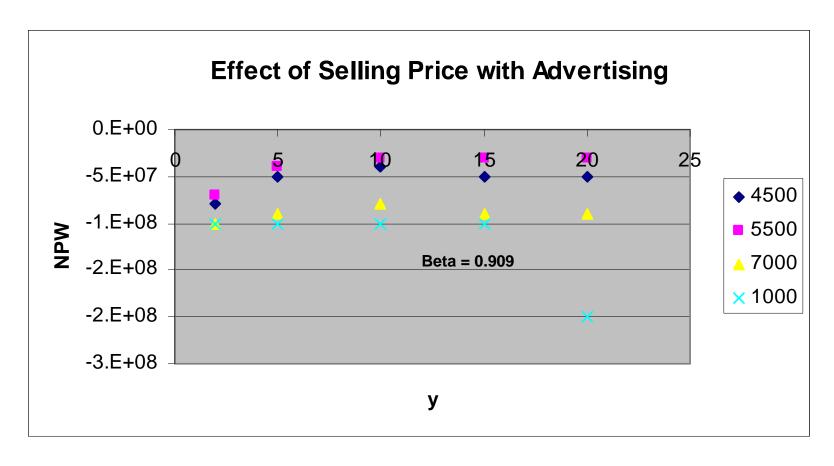

13	Avg. Noise (Db)
341	Power (W)
9.94	weight (lb)
1.017	length (ft)
0.95	width (ft)
1.034	height (ft)
5500	cost \$

B-value: 0.75


Optimal Design (cont.)

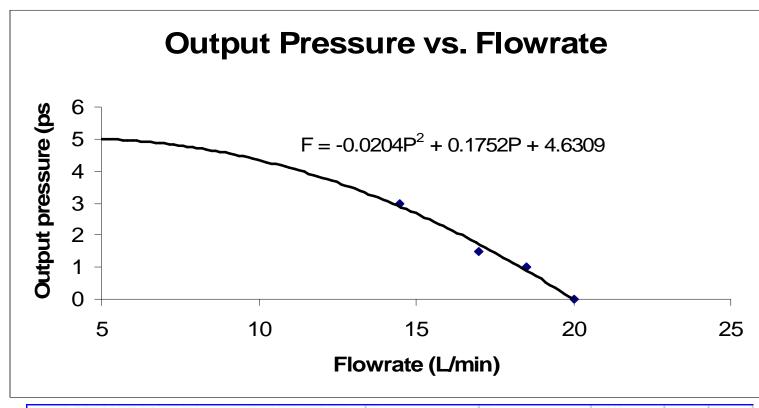
Break Even Analysis

Optimum Selling Price



Conclusions

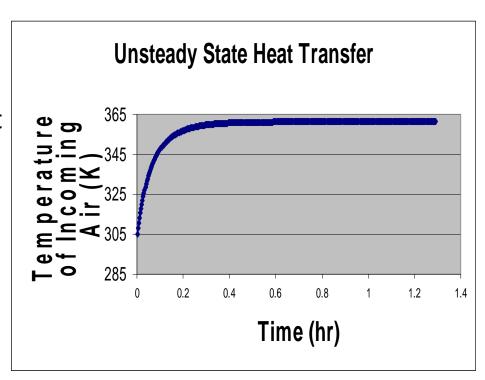
- Selling Price \$5500
- Maximum Selling Price ~ \$12000
- \circ NPW of $3x10^6$
- Min. Production rate of 4000 units/yr
- Economic Model is not very efficient, and does not consider advertising costs


Any Questions?

NPW as a Function of Advertising Rate

$$Cost = TPC + \left(\frac{y}{100}\right) * TPC$$

Pump Performance


Compressor Performance LPM @ PSI	0	1	1.5	3	5
50316	20	18.5	17	14.5	4.5
Maximum Pressure (PSI)	Continuous	Intermittent	Restart		
50316	4.4	11.6	0		

Unsteady State Assumptions

- During the time that the nichrome wire is heating up, there is negligible deviation of the bulk air temperature from the ambient
- The time for the system to heat up is limited by the time for the heat exchangers to reach steady state

Unsteady State Heat Transfer

- Assumed
 - "Plug Flow"
 - Heat is not transferred from exit of wire to beginning of HX
 - Instantaneous wire heating
- Space-time of .52 s
- Pulsed heating model
 - Model does not predict convergence.

Tetragonal v. Orthorhombic

Tetragonal

- $a = b \neq c$
- $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$

Orthorhombic

- $a \neq b \neq c$
- $\alpha = \beta = \gamma = 90^{\circ}$

Membrane Stack

$$I_m = \frac{4QF}{n}$$
 (Current)

$$E_{M} = \frac{RT}{zF} \ln \frac{y_{O_{2},h}}{y_{O_{2},l}} \quad \text{(Voltage)}$$

$$P_{M} = E_{M} \times I_{M}$$
 (Wattage)

Specifications

208	plates
585	С
5	L∕min
24.04	L∕mol
0.00002	mol/s/plate
4	mol electrons/mol O ₂
96485	C/mol electrons
6.431	Α
0.75	A/cm²
9	cm²
3	cm
0.38	cm
0.4	cm
0.2	cm
287.24	cm
8	
14.14	in
11.923	V
76.675	W
0.80	%
	585 5 24.04 0.00002 4 96485 6.431 0.75 9 3 0.38 0.4 0.2 287.24 8 14.14 11.923

Calc	ulations			Cell	Formula
number of plates	208	source	plates	В7	
Temperature	550	source	С	B8	
total volumetric flow rate of permeate	5	spec	L/min	В9	
molar gas volume (STP)	24.04	calc	L/mol	B10	
molar flow rate of permeate/plate	0.00002	calc	mol/s/plate	B11	B9/B10/60/B7
electron stoichiometry	4	source	mol electrons/mol O ₂	B12	
Faraday constant	96485	source	C/mol electrons	B13	
current	6.431	calc	А	B14	B11*B12*B13
current density for BICUVOX.10	0.75	source	A/cm ²	B15	
total plate area required	9	calc	cm ²	B16	B14/B15
side length of square plates	3.00	calc	cm	B17	SQRT(B16)
thickness of plates	0.38	source	cm	B18	
air gap height	0.40	source	cm	B19	
electrode height	0.2	source	cm	B20	
total cell stack height	287.24	calc	cm	B21	B7*B18+(B7+1)*B20+2*B7*B19
number of columns	4	spec		B22	
height per column	28.27	calc	in	B23	B21/(B22*2.54)
electrical potential for each cell	0.055	calc	V	B27	8.314*(B8+273)/2/B13*LN(0.99/0 1)
total potential for stack	11.436	calc	V	B28	B27*B7
power required	73.548	calc	W	B29	B28*B14