Freeze Flame Nano

Presented May 4, 2006

by

Keshan Velasquez

Tyler Viani

Outline

- Introduction to Fires and Flame retardants
- Problem Statement
- Product Discovery
- Economics and Business Plan
- Conclusions and Recommendations

How a Fire Starts¹

- Material comes in contact with heat source
- Pyrolysis Decomposition of material
- Flammable gas reacts with oxygen
- H- and OH- radicals are released

Importance of Flame Retardants²

- 1.7 million fires annually from 1995-2004
 - 500,000 occurred in building structures
- 4,000 civilian fire deaths
- 21,000 civilian fire injuries

² United States Fire Administration. *National Fire Statistics*. Accessed January 2006. www.usfa.fema.gov/statistic/national/

Goal of Flame Retardants

Increase resistance to ignition of fire

- Delay the spread of flame providing time for either extinguishing the flames or for escaping
- Save lives

Halogenated

- Most often bromine
 - Less electronegative / weaker bonds
- Remove H- and OH- radicals
- Relatively low cost
- Potentially toxic
- Not biodegradable

Phosphorus

- When heated, H₃PO₄ is released causing charring
- Char layer protects material from heat
- Nontoxic, biodegradable
- Lower concentrations can be used
- Higher price than halogenated

Nitrogen

- Nitrogen gas dilutes flammable gas
- Cross-linked structures inhibit pyrolysis
- Can partially replace other flame retardants
- Must be used in high concentrations or in conjunction with another flame retardant
- Mechanism not fully understood

Inorganic

- Aluminum Hydroxide / Magnesium Hydroxide
 - Endothermic reaction
 - Forms protective layer and dilutes gases in air.
- Boron Compounds
 - Form protective layer, causes charring
- Easily incorporated into plastics
- High concentrations needed

Flame Retardant Market³

- Market as of 2006
 - Globally
 - 2 billion pounds
 - \$2.1 billion
 - U.S.
 - 1 billion pounds
 - \$1 billion
 - Flame Retardant Coatings
 - 24.5 million pounds
 - \$27.6 million

27% 4% 4% 4% 24% 45% 1 Halogenated 9 Phosphorus 1 Nitrogen 1 Inorganics

³ Lerner, Ivan. "FR Market Down but Not Out: Albemarle Stays the Course." *Chemical Market Reporter*. December 10, 2001 p. 12.

Market Projections³

- Demand for Flame Retardants to grow 3.6% annually
- Market Value to increase 5.9%

³ Lerner, Ivan. "FR Market Down but Not Out: Albemarle Stays the Course." *Chemical Market Reporter*. December 10, 2001 p. 12.

Problem Statement

 Develop a biodegradable, non-toxic flame retardant and analyze economic feasibility

- Product options
 - Impregnation
 - Plastics and rubbers
 - Coating
 - Wood
 - Some plastics
 - Filler
 - Insulation
 - Outdoor Treatment
 - Shingles/Sheds

- Our product: Flame-retardant polymer coating (thermoplastic)
- Proposed Applications
 - Construction (Predominately)
 - Plastics (Some)
 - Electronics (Some)

- Polymer Properties
 - High heat resistance
 - Increase retarding time (char inducing)
 - Multiple applications
 - Cheap

- Required Raw Materials
 - Polymer
 - Water Soluble
 - Biodegradable
 - Clay (nano)
 - Phosphate
 - Water
- Preferred Raw Materials
 - Polyvinyl Alcohol (PVOH)
 - Cloisite
 - Phosphate

Polymer

Why Use PVOH?

- Polyvinyl alcohol
 - Made from saponification of PVAc
 - Uses
 - Adhesives
 - Emulsion paints
 - Biodegradable
 - Very polar

Why Use Nano-Clay?

- Cloisite* (Montmorillonite family)
 - Properties exhibited
 - Increased elasticity modulus
 - Elevated heat distortion temperature
 - Enhanced flame retardant properties
 - Good recycling properties
 - Easily dyed
 - Tends to align parallel to polymer substrate

Why Use Phosphates?

- Phosphates (RH₂PO₄, R=Alkyl group)
 - Relatively inexpensive
 - Can exist in nature (not harmful)
 - Induces high levels of char
 - Stabilizes pyrolysis reactions
 - Distributes heat evenly
 - Decreases heat conduction

Uses in Industry

- Thermosets
 - Reentry cones, fuel tanks and engine encasings
- Thermoplastics
 - Wires, cables, flooring, conveyor belts, tubing, etc.
- GM
 - Cargo beds and auto exterior

Synthesis Path (Saponification of PVAc)

 $PVAc + NaOH_{(aq)} + H_2O \rightarrow PVOH_{(aq)} + NaAc_{(aq)} + H_2O$

Synthesis Path (Mixing)

Synthesis Path (Extruding)

Method of Action⁶

Pyrolysis

- Wood dehydrates
- Water vapors and trace carbon dioxide released
- Small amounts of formic and acetic acid vapors

Combustion

- Slight oxidation reactions occur on wood surface
- Slow but steady loss of weight
- Trace non-ignitable gasses
 released

⁶ Browne, F.L. Theories of the Combustion of Wood and Its Control. A Survey of the Literature. Forest Products Laboratory, Forest Service U.S. Department of Agriculture.

Method of Action

Pyrolysis

- Slow endothermic pyrolysis reactions continue
- Toxic carbon monoxide begins
 diffusing
- Minor surface charring

T<280 °C

Combustion

- Exothermic temperature reached (~240 °C)
- Ignitable gasses emitted
- Larger temperature gradient within the wood

Method of Action

Pyrolysis

- Onset of exothermic pyrolysis
- Vapors eject tars that appear as smoke
- "Smoking" persists until T~400 °C

Combustion

- Secondary pyrolysis results in vapor combustion
- Gasses rapidly emerge
- Char layer develops quickly around T=400 °C

Method of Action

T>500 °C

Pyrolysis

- Maximum surface temperature reached
- Vigorous secondary reactions
 complete carbonization process
- Tars and gaseous byproducts are further pyrolyzed into more combustible products

Combustion

- Surface temperature rise resulting from exothermic rxns.
- Wood glows as carbon is consumed
- Primary/secondary reactions cease → smoldering ember remains

- - High thermal resistance
 - Low volatility
 - Low vapor pressures
 - **Overall versatility**
 - Competitive cost

- Producer considerations Consumer considerations
 - Retardancy time
 - Number of applications
 - Odor
 - Setting time
 - Effective amount

Consumers and Utility

- Utility
 - A measure of the happiness or satisfaction gained from consuming a good or a service
 - Attempt to always maximize utility in products
- Product development
 - Utility measurements provide means to enhance a products' appeal (demand) to the consumer
 - Maximizing utility generates a products maximum happiness
 - Generate a product "happiness function" that attempts to maximize utility (happiness)

Consumers and Utility

Consumers and Utility

Consumer Happiness

- Happiness function
 - Relate consumer attributes to product happiness
 - Assign scores corresponding to consumer attributes
 - Normalize scores on a 0-1 scale
 Ex: Let 1-scoop of ice cream → 50% happy (0.50)
 2-scoops of ice cream → 75% happy (0.75)
 - Relate consumer attributes to a quantifiable physical property

Ex: Measure, 1-scoop = 0.50 wt% sucrose $(C_{12}H_{22}O_{11})$ 2-scoop = 1.00 wt% sucrose $(C_{12}H_{22}O_{11})$

Consumer Happiness

- Happiness function (cont'd)
 - Altering sucrose concentrations changes the amount in each "scoop"
 - Overall consumer happiness changes resulting from changes in sugar concentrations

- Consumer happiness
 - Yields ranges (thresholds) for product comparison
 - Must be balanced with total cost to make product

- Consumer attributes
 - Retardancy time
 - Number of applications
 - Odor
 - Setting time
 - Effective amount
 - Biodegradability
 - Toxicity
- Measuring happiness
 - Assign happiness values to consumer attributes
 - Assign weights to attributes based on their relative importance

 $w_i = weight i^{th} component$ $y_i = happiness i^{th} component$

 $\beta = \frac{H_2}{H_1}$

Consumer Attribute	Weight
Retardancy time	0.30
Thickness	0.15
Odor	0.15
Setting time	0.25
Effective amount	0.07
Biodegradability	0.04
Toxicity	0.04

Achieving Consumer Happiness

- Relate product composition to physical models
 - % -- PVOH, Phosphate, Cloisite, and Water
- Assume initial product composition
 - PVOH ~ 40%
 - Phosphate ~ 27%
 - Cloisite ~ 3%
 - Water ~30%
- Vary compositions to achieve both a profitable product and a "happy" product

- Modeling consumer happiness
 - Retardancy time
 - Altering the number of applications effects thickness (Basis 10cm X 10cm X 2cm)
 - Assume a basis "block" of treated wood (~3 coats @ ~ 1mm/coat)
 - Basic procedure
 - Polymer coating heats up with external heat source
 - Once a certain temperature is reached, polymer barrier degrades inducing char on wood
 - Char layer helps inhibit further heat transfer

Pyrolysis⁶

- Fast pyrolysis
 - Wood flaming
 - Drastic Temperature increase
 - Evolution of combustible gasses
- Slow pyrolysis
 - Wood glowing
 - Less exothermic
 - Fewer combustible gasses emitted
 - Enhanced through char formatoin

Time

Char Formation⁶

$$X_{i} = \frac{m_{0,i} - m_{i}}{m_{0,i} - m_{char}}$$

Char Layer Kinetics⁶

$$\frac{dX_i}{dt} = A_i e^{\left(\frac{-E_A}{RT_{avg}}\right)} (1 - X_i)^n$$

m_i=Mass ith component initially, (*0,i*), after heating, (*i*), (kg)

m_{char}=Mass of char developed (kg)

A_i=Frequency factor (min⁻¹) E_A=Activation Energy (kJ/mol) R=Gas constant (kJ/mol-K) T_{avg}=Average wood temperature (K) n=Reaction order (unitless)

⁶ Browne, F.L. Theories of the Combustion of Wood and Its Control. A Survey of the Literature. Forest Products Laboratory, Forest Service U.S. Department of Agriculture.

Char Layer Kinetics (cont'd)

$$\left(\frac{dX}{dt}\Big|_{T_{avg}}\right)_{W} = \left(\frac{dX}{dt}\Big|_{T_{avg}}\right)_{C} w_{C} + \left(\frac{dX}{dt}\Big|_{T_{avg}}\right)_{L} w_{L} + \left(\frac{dX}{dt}\Big|_{T_{avg}}\right)_{H} w_{H}$$

 W_W =Wood as a whole W_C =Cellulose component W_L =Lignin component W_H =Hemicellulose component

Modeling Consumer Happiness

- Setting Time
 - Modeled diffusion of water based upon a varying number of applications
 - Use Gurney-Lurie tables⁷ to estimate evaporation

Basis 10cm X 10cm X 2cm

$$n = \frac{x}{x_1} \qquad m = \frac{D_{AB}}{k_c x_1} \qquad Y = \frac{C_{As} - C_A}{C_{As} - C_{A0}} \qquad X = \frac{D_{AB} t}{x_1^2}$$
$$X = -0.392 \ln(Y) + 0.112$$

⁷Welty, et al. *Fundamentals of Momentum, Heat & Mass Transfer.* 4th Edition. John Wiley & Sons, Inc 2001.

- Modeling Consumer Happiness
 - Thickness
 - Relate number of coats by comparison with competitors to an average thickness (~1mm)
 - Determine resulting happiness
 - Odor
 - Assign different odor values to multiple functional groups
 - Relate these numeric values to consumer preferences

F.G.	Hydrocar -bons	Alcohols/ halogens	Carboxylic Acids	Ethers	Aromatics	Amines	Ketones	Mercaptans
#	0	1	2	3	4	5	6	7

- Modeling Consumer Happiness
 - Effective Amount
 - Assumed thickness
 - Determine the effective amount (maximum allowable volume percentage ~ 35% by volume)
 - Biodegradablilty
 - If product is biodegradable assign 1, if not assign 0
 - Toxicity
 - If product is toxic assign 0, if not assign 1
- Determining Product Happiness
 - Solve for compositions that provide greatest profit
 - Solve for compositions that provide greatest happiness

Our Product – "Freeze Flame Nano"

- PVOH = 50%
- Phosphate = 15%
- Cloisite = 3%
- Water = 32%
- Happiest Product
 - PVOH = 50%
 - Phosphate = 27%
 - Cloisite = 3%
 - Water = 20%

Our major competitor

- Firetect WT-102
 - 18.4% Polyvinylidene Chlorine
 - 21.8% Phosphate
 - 3.4% Sodium Salt
 - 41.9% Butyl Acetate

- Resulting Happiness
 - By varying compositions to provide the most profitable product

 $H_1 = 0.868$ $H_2 = 0.574$ $\beta = \frac{H_2}{H_1} = 0.661$

- Resulting Happiness
 - By varying compositions to provide the happiest product

$$H_1 = 0.930$$
 $H_2 = 0.574$ $\beta = \frac{H_2}{H_1} = 0.617$

Process Flow Diagram

Demand

Equations used to determine demand

•
$$\beta p_1 d_1 = \alpha p_2 d_2 \left(\frac{d_1^{\ \alpha}}{d_2^{\ \beta}} \right)$$

- $Y = p_1 d_1 + p_2 d_2$
- Solving both equations for d₂ and setting them equal to each other will give our demand

Demand

Year	Demand (lb/year)
1	19,000
2	930,000
3	3,900,000
4	4,900,000
5	5,300,000
6	5,500,000
7	5,800,000
8	6,000,000
9	6,300,000
10	6,700,000

$$d_1 = d_1^{\alpha} \left(\frac{\alpha}{\beta}\right) \left(\frac{p_2}{p_1}\right) \left(\frac{Y}{p_2} - \frac{p_1 d_1}{p_2}\right)^{1-\beta}$$

Regret Analysis

NPW					
	Low	Med	High		
Design 1	\$ 3,600,000	\$ (1,3 <mark>00,000)</mark>	\$ (6,100,000)		
Design 2	\$19,000,000	\$13,000,000	\$ 6,000,000		
Design 3	\$22,000,000	\$15,000,000	\$ 9,000,000		
Max	\$22,000,000	\$15,000,000	\$ 9,000,000		

Regret Analysis

Regret					
	Low	Med	High	Max Regret	
Design 1	18 400 000	16 300 000	15 100 000	18 400 000	
	10,100,000	10,000,000		10,100,000	
Design 2	3,000,000	2,000,000	3,000,000	3,000,000	
Design 3	0	0	0	0	
	0				

Process Capacity

Component	Capacity
Tank 1	7.2 m ³
Tank 2	4.1 m ³
Pump 1	4.9 kW
Pump 2	0.6 kW
Settler	6.8 m ³
Evaporator	3.2 m ³
Extruder	0.7 m ³
Storage	85 m ³

Equipment Cost

Tank 1	\$40,000	Heater 2	\$6,000
Tank 2	\$25,000	Extruder	\$47,000
Pump 1	\$7,000	Conveyor	\$18,000
Pump 2	\$5,000	Storage	\$40,000
Settler	\$76,000	Piping	\$5,000
Dryer	\$25,000		
Heater 1	\$16,000	Total Cost	\$310,000

Economics

Economics

$$NPW = \sum_{n=1}^{10} \frac{CF_n}{(1+i)^n} + \frac{WC + SV}{(1+i)^{10}} - TCI$$

- TCI = \$1,700,000
- NPW = \$15,300,000

⁸West, et al. *Plant Design and Economics for Chemical Engineers.* 5th Edition. McGraw-Hill 2004.

Risk Analysis

Plant Location / Distribution

- Corpus Christi, TX
 - Supply
 - Phosphate Humble, TX
 - Cloisite Gonzales, TX
 - Polymer La Porte, TX
 - Demand
 - Large construction markets in Houston, Dallas, Kansas City

Target Consumers

- Turner Construction Company
 - Houston, Dallas, Kansas City
- Hansel Phelps Construction Co.
 - Austin
- JE Dunn Construction Company
 - Dallas, Houston, Fort Worth, Kansas City
- Centex Construction
 - Dallas, Houston, Plano, Oklahoma City

Conclusions

- Freeze Flame Nano is durable, heat resistant, char-inducing flame retardant
- It will bind to various surfaces because of its polar nature
- We feel the construction industry would benefit most from FFN

Recommendations

- Find a cheaper source of PVA
- Research cheaper alternatives (polymers)
- Perform rigorous lab-scale tests on FFN to determine quantitative performance
- Vary color of product

References

- 1. How Flame Retardants Work? EFRA. Accessed January 2006. http://www.cefic-efra.com/
- 2. United States Fire Administration. *National Fire Statistics*. Accessed January 2006. www.usfa.fema.gov/statistic/national/
- 3. Lerner, Ivan. "FR Market Down but Not Out: Albemarle Stays the Course." *Chemical Market Reporter*. December 10, 2001 p. 12.
- 4. Mazali, C.A.I. and M.I. Felisberti. *Vinyl Ester Resin Modified with Silicone-Based Additives:II. Flammability Properties.* www.interscience.wiley.com. Accessed April 2006.
- 5. Hussain, M., et.al. *Effect of Organo-Phosphorus and Nano-Clay Materials on the Thermal and Fire Performance of Epoxy Resins.* Journal of Applied Polymer Science, Vol. 91,1233-1253. 2003
- 6. Browne, F.L. Theories of the Combustion of Wood and Its Control. A Survey of the Literature. Forest Products Laboratory, Forest Service U.S. Department of Agriculture.
- 7. Welty, et al. *Fundamentals of Momentum, Heat & Mass Transfer.* 4th Edition. John Wiley & Sons, Inc 2001.
- 8. West, et al. *Plant Design and Economics for Chemical Engineers.* 5th Edition. McGraw-Hill 2004.

Questions?