Production of γ-tocopherol Rich Mixtures

By Jessica John Sam VanGordon Justin Sneed

Table of	Contents
----------	----------

EXECUTIVE SUMMARY	4
INTRODUCTION	5
OBJECTIVE	5
BACKGROUND	6
Γ-TOCOPHEROL	6
Γ-TOCOPHEROL VS. A-TOCOPHEROL	7
RAW MATERIALS	7
PRODUCTION PROCESSES	9
OVERALL PRODUCTION	9
DISTILLATION OF CRUDE SOYBEAN OIL DEODORIZER DISTILLATE	10
ENZYME REACTION	11
MOLECULAR DISTILLATION	13
Methanol Process	15
Non-Methanol Process	18
CHROMATOGRAPHY	22
PRODUCING Γ - Δ -tocopherol Products	23
PRODUCING 99% Γ-TOCOPHEROL PRODUCT	25
CHROMATOGRAPHY PLANT SIZING	27
DISTILLATION OF CHROMATOGRAPHY PRODUCTS	29
ECONOMIC ANALYSIS	30
PLANT DESIGN SELECTION	30
PRODUCTION RATES CONSIDERED	30
USE OF METHANOL FOR DISTILLATION	32
PRODUCT PRICES	33
NET PRESENT WORTH AND RETURN ON INVESTMENT	34
Risk Analysis	35
GAMS ANALYSIS	37
MINIMUM PRODUCTION FOR PROFITABILITY	38
FDA REGULATIONS	38
PROPOSED IMPROVEMENTS	39
DISTILLATION	39
CHROMATOGRAPHY	40
ALTERNATIVE PROCESSES	40
AFFINITY CHROMATOGRAPHY	40
BIOPROCESSING	41

GENETIC ENGINEERING	41
APPENDICES	43
Appendix A – Key Terms Appendix B- Chemical properties	43 45
APPENDIX C – FINANCIAL CALCULATIONS	65
REFERENCES	76

Executive Summary

The primary focus of this project is to analyze the methods available for processing soybean oil deodorizer distillate, SODD, to produce various concentrations of tocopherol mixtures for vitamin E dietary supplement uses. An enzymatic distillation process utilizing *Candida rugosa* lipase process SODD to produce an α -rich tocopherol mixture currently sold on the market. The plant will have the capacity to produce 16,500 kg/day of an α -rich tocopherol mixture. The α -rich tocopherol mixture will be processed by column chromatography, in order to produce γ - δ -rich tocopherol, and 99.9% pure γ -tocopherol. The plant will be capable of producing 1,000kg/yr of pure γ -tocopherol, and 15,100 kg/yr of γ - δ -tocopherol mixture. The quantity of γ - δ and γ -tocopherol produced may be varied as sales prices fluctuate.

In order to determine the profitability of producing pure γ -tocopherol, five plant designs were considered.

- Design 1 produces 1kg/yr γ -tocopherol, and 5,510,585 kg/yr γ - δ -tocopherol
- Design 2 produces $10 \text{kg/yr } \gamma$ -tocopherol, and 5,510,563 kg/yr γ - δ -tocopherol
- Design 3 produces 100kg/yr γ -tocopherol, and 5,510,344 kg/yr γ - δ -tocopherol
- Design 4 produces 1,000kg/yr γ -tocopherol, and 5,508,148 kg/yr γ - δ -tocopherol
- Design 5 processes 0 kg/yr γ -tocopherol, and 5,510,588 kg/yr γ - δ -tocopherol

Design 5 is used as a basis of comparison in order to determine the relative profitability of the γ -tocopherol production process. In general, as the production rate of pure γ tocopherol increases, the net present worth and annual return on investment increases. Design 4, which produced 1,000 kg/yr γ -tocopherol, had a net present worth of \$1.2 billion, whereas Design 1, which produced 1 kg/yr γ -tocopherol, had a net present worth of \$928 million. The net present worth of Design 5 was \$930 million, slightly higher than the net present worth of Design 1, because the revenue generated annually is not substantial enough to make up for the increased capital investment. In order for γ tocopherol production to be profitable, a minimum of 8.61 kg/yr γ -tocopherol must be produced.

Introduction Objective

The objective of this project was_to design an economic process capable of producing high yields of γ - δ and γ -tocopherol rich mixtures from soybean oil deodorizer distillate, SODD, which were to be marketed as a safe alternative to α -rich tocopherol, also known as vitamin E. SODD is currently processed to produce a tocopherol mixture containing the homologues α , δ , and γ -tocopherol. This α -rich tocopherol mixture is used extensively in pharmaceuticals, cosmetics, and animal feed. Tocopherols are fat-soluble vitamins that neutralize free radicals in the body and play an essential role in reproduction. However, recent studies suggest a link between the consumption of α tocopherol and increased risk of heart disease. Though γ and δ -tocopherol have health benefits similar to those of α -tocopherol, consumption of these two homologues is not currently associated with an increased risk of heart disease.

Background

γ-Tocopherol

Figure 1. γ -tocopherol chemical structure

Tocopherols exist in various plants, such as soybeans, in a mixture of homologues: alpha, beta, gamma, and delta tocopherol. When these tocopherolcontaining plants are processed, tocopherols may be extracted with other materials from the plant matter. This mixture may be further processed to remove the tocopherol homologues for use in pharmaceuticals, animal feed, human dietary supplements, and other areas. Tocopherols are fat-soluble antioxidants that are essential for normal reproduction and neutralize free radicals in the body. Preliminary studies revealed that α tocopherol is a powerful antioxidant which protects human cells from oxidation and neutralizes damaging unstable free radicals. Practically all supplemental tocopherol is dalpha-tocopherol, also known as vitamin E. Vitamin E is the second best selling vitamin in the U.S., with multi-vitamins being the top seller. Sales of vitamin E topped the \$706 million for 2003⁹. Recent studies indicate that γ -tocopherol type may help prevent prostate cancer and heart disease, whereas α -tocopherol may actually increase risk of heart disease. In addition, studies show that α -tocopherol has a higher affinity in the body than γ -tocopherol. Therefore, the presence of α -tocopherol inhibits the absorption rate of γ -tocopherol. Consequently, in order for a γ -tocopherol mixture to be truly effective, there must be no more than a trace amount of α -tocopherol present in the mixture. For these reasons, industrial emphasis is shifting towards production of γ -tocopherol mixtures containing little alpha homologues, and away from production of the more common α tocopherol.

γ-tocopherol vs. α-tocopherol

According to Hensley², α -tocopherol is generally stated to be "more biological active" than the desmethyl tocopherols. This statement is perhaps a generalization arising from misinterpretation of older literature taken out of historical context. Past studies showed α -tocopherol as a fertility maintenance agent. In standard fertility-restoration assays, γ -tocopherol is only 10% as active as α -tocopherol. However, there is no prior reason to expect that tocopherol efficacy as a fertility agent would correlate with other biological activities. There is some evidence that supplementation with α -tocopherol depresses the serum level γ -tocopherol and is therefore undesirable. A goal of this process is to obtain a mixture containing γ -tocopherol and relatively free of α -tocopherol.

Raw Materials

The source of tocopherols for this process is soybean oil deodorizer distillate, SODD, a byproduct of soybean oil production. Tocopherols found in soybeans are removed during the soybean oil process via the deodorizer distillate. SODD may be purchased from numerous soybean processing factories across the United States. SODD normally contains anywhere from 10% to 15% tocopherols, 60% of which are γ - tocopherol, 20% of which are α -tocopherol the remainder being δ -tocopherol. AG Processing, Inc., located in Nebraska, and Bunge North America, located in Indiana, are two providers of SODD. SODD is usually shipped by truck loads of 48,000 lbs., and sold at a price of \$0.14/kg.

Production Processes

Overall Production

The production of γ -tocopherol rich mixtures includes three main processes as shown in Figure 2. SODD is first purified by using molecular distillation coupled with enzymatic reactions. The molecular distillation removes unwanted components from the

SODD mixture while the enzymatic reactions convert unwanted components into molecules that can be more easily distilled. This process purifies the original SODD mixture containing 10% tocopherols into a mixture that contains 75% tocopherols,

while creating a byproduct stream of free fatty acids, sterols, and sterol esters which are then sold. This new tocopherol rich mixture is then further purified by high performance chromatography. Tocopherol homologues exhibit different acidities in weakly selfdissociating solvents. Basic anion exchange resins and non-ionic exchange resins are used in the chromatography to exploit these chemical differences. The chromatography is able to produce a product comprised of mostly γ -tocopherol, 77%, and small amounts of α -tocopherol, 5%, as well as a product with 99% γ -tocopherol. Next, these to products are distilled, evaporating the solvents from the chromatography and leaving the tocopherols behind for sale.

Distillation of Crude Soybean Oil Deodorizer Distillate

The distillation of crude soybean oil deodorizer distillate is a multiple unit process consisting of two primary types of stages (1) enzyme reaction and (2) molecular

while the enzymatic reactions using *Candida rugosa* lipase convert unwanted components into molecules that can be more easily distilled. This process purifies the original SODD mixture containing 10% tocopherols into a mixture that contains 75% tocopherols, while creating a byproduct stream of free fatty acids, sterols, and sterol esters which are then sold. The distillation process was designed with and without methanol induction. The whole distillation process yields a 90% recovery of tocopherols from crude SODD. Other leading industrial methods, such as liquid-liquid extraction using cold ethanol, only achieve a maximum recovery of 75% of tocopherols from crude SODD^{3,4}.

Enzyme Reaction

The purpose of the enzyme reaction is to transform substances in the process mixture that have molecular weights similar to tocopherols. Altering the molecular structure of the substances changes the molecular weight of the substances, thus creating substances that have a higher or lower boiling point than the tocopherols. This allows the use of heat for separation of unwanted substances from the tocopherols. Sterols are the main substances that can not be separated out from SODD by molecular distillation because their molecular weight is very similar to that of tocopherols.

Lipases are a group of enzymes that catalyze the hydrolysis of fats into glycerol and fatty acids. During the enzyme reaction *Candida rugosa* lipase hydrolyzes acylglycerols. The lipase also bonds FFAs (organic acids) and sterols (alcohols) together to form steryl esters (inorganic salts) in a process known as esterification. This is useful because steryl esters have a higher boiling point than tocopherols. Therefore vaporization can be used for the separation of tocopherols from the mixture. The vaporization is performed under vacuum to prevent the decomposition of tocopherols under heating conditions. Because water is necessary for hydrolysis of the acylglycerols, water is added to the reactors.

Figure 4. Hydrolysis: where R₁, R₂, and R₃ are fatty acid residues.

In one of the setups, methanol, an alcohol, is added to the reactors. Methanol is added to the reactors in a ratio of 2 mol of methanol per 1 mol FFA, to esterify additional FFAs. This creates a mentholated free fatty acid (FAME) which as a lower boiling point than the tocopherols. By creating FAME, more impurities can be removed from the process mixture which further concentrates the tocopherols. This creates a product advantage over the non-methanol setup. The use of methanol can create a tocopherol mixture product containing 75% tocopherols while the non-methanol setup only creates a 65% tocopherol mixture, which is the same product that an industrial liquid-liquid extraction process would achieve. Methanol is a simple alcohol but other alcohols can be used in its place.

In order to keep the process continuous, the enzyme reactions take place in multiple tanks. While one tank is being prepped and filled for the start of the enzyme reaction, another tank where the enzyme reaction is at the end of its gestation or reaction time is emptying out. A tank remains empty at all times, in case deviations in flowrates require overflow to the next tank in the system. A simple diagram of this can be seen in Figure 5. This creates a system of X+2 tanks, where X is determined from available tank sizes and system flows into the enzyme reaction phase.

Figure 5. Tank Flow Schematic

Molecular Distillation

Molecular distillation, also known as short-path distillation, is the separation of materials using differences in the boiling points of the materials under vacuum conditions (see Appendix B). Molecular distillation uses heat in order to bring the substances to their boiling points. All materials, both liquid and solid, are capable of vaporization under extreme low pressure conditions (i.e. pressure ~0.001 mm Hg), provided a high enough temperature can be employed. The reduction in the pressure lowers the interaction and collisions of chemicals with inert gases, gasses that do not react with the components in the process mixture, present in the reaction chamber. By applying a vacuum to a system, inert gasses are removed from the reaction chamber. Also, by putting the process in vacuum, less heat is needed to vaporize a substance, thus lowering boiling points by approximately 150 °C. Molecular distillation is most useful in separating molecules of large molecular weight because larger molecules begin to break down under extreme heats (over 250 °C) at atmospheric pressure (760 mm Hg.)

For the molecular distillation mechanism to operate properly and effectively, molecules need to be removed from interaction areas. Interaction areas include, but are not restricted to, condensing surfaces and inert molecules in gas pathways. Some methods of molecule removal from molecular distillers include condensation, reaction, adsorption, and pumps. Creating a short unobstructed path to condensing surfaces improves the operation of molecular distillation. Ideally the condensing surface of a molecular distiller should cover all the paths an evaporated molecule can take.

Backing/Roughing Vacuum Pump
Diffusion Ejector Pump (High Vacuum)
Roughing Vacuum Pump (Degasser Option)
Trap (Degasser Option)
Chamber Trap
Liquid Transfer Pump
Check Valve Rotor
Inner Heater Rotor
Middle Heater Rotor
Outer Heater
Domed Condenser
Rotor
P - Vacuum Pressure Gauge

Centrifugal molecular distillation is the molecular distillation used in the enzyme distillation process. Centrifugal molecular distillers operate with a feed entering at the center of a rotating disk. The disk rotates, moving the feed out to the ends of the disk and creating a film layer across the disk. Heating elements raise the temperature of the film on the disk causing components in the film to vaporize away from the film. The vapor condenses on a condensing plate, or dome, and the condensate runs into a collector on the side of the dome. A collection ridge at the end of the disk collects the film residue that is not vaporized. During the process, a continuous vacuum pump is operating to keep the system at low pressure.

Methanol Process

Figure 7. Process diagram for staged molecular distillation & enzyme reaction process with methanol

Stage	Purpose	Collect	Remove
Enzyme Mixing Tank	Dilute <i>Candida rugosa</i> lipase before adding to enzyme reactor	0.1g/mL solution of <i>Candida</i> <i>rugosa</i> lipase	N/A
Molecular Still System 1			
Still 1-1 (240°C, 0.02 mmHg)	Remove High boiling point substances (steryl esters, di-acylglycerols and tri-acylglycerols)	Distillate	Residue
Enzyme Reactor 1 (30°C)	Hydrolize acylglycerols, bond FFA and Sterols into steryl esters, bond FFA and methonal into FAME	Oil Layer	Water Layer
Vaporizer 1 (110°C)	Remove excess water from process solution	Process Solution	Water Vapor
Molecular Still System 2			
Still 2-1 (160°C, 0.2 mmHg)	Remove FFA and FAME from process solution	Residue	Distillate
Still 2-2 (240°C, 0.02 mmHg)	Concentrate Tocopherols in distillate	Distillate	Residue
Enzyme Reactor 2 (30°C)	Hydrolize acylglycerols, bond FFA and Sterols into steryl esters, bond FFA and methonal into FAME	Oil Layer	Water Layer
Vaporizer 2 (110°C)	Remove excess water from process solution	Process Solution	Water Vapor
Molecular Still System 3			
Still 3-1 (160°C & 175°C, 0.2 mmHg)	Remove FFA and FAME from process solution	Residue	Distillate
Still 3-2 (240°C, 0.02 mmHg)	Concentrate Tocopherols in distillate	Distillate	Residue

Table 1. Stage descriptions for molecular distillation & enzyme reaction process with methanol

1. Initially a first stage molecular distillation is performed. This action is carried out in order to remove high boiling point substances, including steryl esters, tri-acylglycerols, and di-acylglycerols, from the raw SODD. The molecular distiller is operated at 240°C, 0.02 mmHg. The distillate goes to waste while the residue is passed onto the next step in the process.

- 2. The enzyme tank is loaded with a set amount of process material (molecularly distilled fraction). The tank is then loaded with *Candida rugosa* lipase at 200 U/g of process material. One unit (U) is the amount of enzyme required to liberate 1 µmol of fatty acid per minute. Water is also added to the reaction tank to a level where 20%wt of the mixture is water. This solution is then incubated and agitated. The mixture is incubated for 16 hours. Methanol is then added at 2 moles of methanol per mole of FFA in the mixture. This mixture is then incubated for an additional 6 hours in order to esterify FFAs in the reactor creating FAMEs. The water layer in the reactor is then drained out to waste and the oil layer is passed onto a vaporizer.
- 3. In the vaporizer, excess water is then boiled away from the oil layer to below 100 ppm and passed onto the next molecular distiller. This is monitored by a density sensor.
- 4. A second system of molecular distillers is used to remove FFAs and FAMEs from the process mixture. The 1st distiller is operated at 160°C and 0.2 mmHg. The distillate goes to waste and the residue is passed on to the 2nd distiller. This 2nd distiller in series operates at 240°C, 0.02 mmHg. This residue goes to waste and the distillate is passed onto the next step.
- 5. The second series of enzyme tanks are operated in the same fashion as the first enzyme reactors. The mixture is incubated for 16 hours. An amount of methanol is then added at 2 moles of methanol per mole of FFA in the mixture. This mixture is then incubated for an additional 6 hours to esterify FFAs in the reactor

creating FAMEs as before in the first reactors. The water layer in the reactor is then drained out and the oil layer is passed onto a vaporizer.

- 6. The second vaporizer has the same function as the first vaporizer in which water is reduced to 100 ppm in the oil layer coming off of the reactors which is monitored by a density sensor.
- 7. The final molecular distillers remove two fractions that are FFA and FAME rich to leave a tocoperol rich (75%wt) distillate and a steryl ester rich resin. A series of two stills are used, with the 1st still using two heat profiles. The 1st molecular still operates at 160°C and 175°C with 0.2 mmHg of pressure. The distillates go to waste and the residue is passed on to 2nd distiller. The 2nd molecular distiller operates at 240°C and 0.02 mmHg. The residue is passed to waste.
- 8. The exit distillate flow is ether collected for sale, passed on to a secondary process or both.

Non-Methanol Process

Figure 8. Staged molecular distillation & enzyme reaction process w/o methanol.

Stage	Purpose	Collect	Remove
Enzyme Mixing Tank	Dilute <i>Candida rugosa</i> lipase before adding to enzyme reactor	0.1g/mL solution of <i>Candida</i> <i>rugosa</i> lipase	N/A
Molecular Still System 1			
Still 1-1 (250°C, 0.2 mmHg)	Remove High boiling point substances (steryl esters, di-acylglycerols and tri-acylglycerols)	Distillate	Residue
Enzyme Reactor 1 (35°C)	Hydrolize acylglycerols, bond FFA and Sterols into steryl esters	Oil Layer	Water Layer
Vaporizer 1 (110°C)	Remove excess water from process solution	Process Solution	Water Vapor
Molecular Still System 2			
Still 2-1 (250°C, 0.2 mmHg)	Remove FFAs from process solution	Distillate	Residue
Enzyme Reactor 2 (35°C)	Hydrolize acylglycerols, bond FFA and Sterols into steryl esters	Oil Layer	Water Layer
Vaporizer 2 (110°C)	Remove excess water from process solution	Process Solution	Water Vapor
Molecular Still System 3			
Still 3-1 (160°C & 200°C, 0.2 mmHg)	Remove FFA from process solution	Residue	Distillate
Still 3-2 (230°C, 0.04 mmHg)	Concentrate Tocopherols in distillate	Distillate	Residue

Table 2. Stage descriptions for molecular distillation & enzyme reaction process w/o methanol

- 1. Initially a first stage molecular distillation is performed. This action is carried out in order to remove high boiling point substances, including steryl esters, tri-acylglycerols, and di-acylglycerols, from the raw SODD. The distiller is operated at 250°C and 0.2 mmHg. The distillate goes to waste while the residue is passed onto the next step in the process.
- 2. The enzyme tank is loaded with a set amount of process material (molecularly distilled fraction). The tank is then loaded with *Candida rugosa* lipase at 200 U/g of process material. One unit (U) is the amount of enzyme required to liberate 1

µmol of fatty acid per minute. Water is also added to the reaction tank to a level where 20%wt of the mixture is water. This solution is then incubated and agitated. The mixture is incubated for 24 hours at 35 °C. The water layer in the reactor is then drained out and the oil layer is passed onto a vaporizer.

- 3. In the vaporizer, excess water is boiled away from the oil layer to below 100 ppm and passed onto the next molecular distiller. This is monitored by a density sensor.
- 4. A second system of molecular distillers is used to remove FFAs from the process mixture. The distiller is operated at 250°C and 0.2 mmHg. This residue goes to waste and the distillate is passed onto the next step.
- 5. The second series of enzyme tanks are operated in the same fashion as the first enzyme reactors. The mixture is incubated for 24 hours at 35 °C. The water layer in the reactor is drained out and the oil layer is passed onto a vaporizer.
- 6. The second vaporizer has the same function as the first vaporizer in which water is reduced to 100 ppm in the oil layer coming off of the reactors which is monitored by a density sensor.
- 7. The final molecular distiller removes two fractions that are FFA rich to leave a tocoperol rich (65%wt) distillate and a steryl ester rich resin. A series of two distillers are used, with the first distiller using two heat profiless. The 1st molecular distiller operates at 160°C and 200°C with 0.2 mmHg of pressure. The distillates go to waste and the residue is passed on to 2nd distiller. The 2nd molecular distiller operates at 230°C and 0.04 mmHg. The residue is passed to waste.

8. The exit distillate flow is ether collected for sale, passed on to a secondary process or both.

Chromatography

High performance liquid chromatography, HPLC, is used for the separation of α -tocopherol from γ -tocopherol. As discussed by Shizumasa¹³, tocopherol homologues exhibit different acidities in weakly self-dissociating solvents (i.e. methanol and acetone). The self-dissociating solvents have a tendency to release protons in a slight degree. Basic anion exchange resins and non-ionic exchange resins are used in the chromatography to exploit these chemical differences. As shown in Figure 9, most of the tocopherol mixtures are combined with a non-polar solvent and passed through the column with non-ionic exchange resin. The remainder of the tocopherol mixtures are combined with a polar solvent and passed through a strong base anion resin. The non-ionic exchange resin is used to produce a product comprised of mostly γ -tocopherol, 77%, and small amounts of α -tocopherol, 5%. The strong base anion resin is used to process the plant's full capacity, 24,750 kg/day tocopherol mixture. Running at full capacity, the HPLC columns are able to produce 15,100 kg of γ - δ -tocopherol per day.

Producing γ-δ-tocopherol Products

To produce a product that is comprised of mostly γ -tocopherol and small amounts of α -tocopherol, a non-ionic absorbent resin is used. The non-ionic silica based resins

separate the tocopherols based on polarity of the solvent and adsorption of the tocopherol oil onto the resin. The mobile phase is created by dissolving the tocopherol mixture in a long chain alkane, heptane, in a 3:1 ratio. A HPLC

column is slurry packed in heptane. The resin is flushed with 10 bed volumes of HPLC grade heptane to ensure all traces of water have been removed. Thirty-three liters of the mobile phase is loaded into the column. This load contains 11 kilograms of tocopherols. The mobile phase is then eluted by a seven stage process. First three hundred

and twenty-

nine

of

Figure 11. Elution for Non-ionic Resin

Figure 10. Loading for Non-

pure

heptane is eluted through the column. This stage removes a high percentage of α -tocopherol. Next, a series of 165 liter mixtures of 95% heptane and 5% acetone are eluted comprising of stages 2-5. These stages remove a high percentage of γ -tocopherol. This is due to the addition of the ketone acetone. The acetone modifies the polarity to suit desorption of γ -

tocopherol. Stage 6 is eluted with 329 liters of a 70% acetone and 30% heptane mixture. The large amount of acetone is conducive to desorption of δ -tocopherol. The final stage,

stage 7, cleans the column leaving it ready for another run by eluting 329 liters of pure heptane. Stage 3 has the highest yield and the largest percentage of γ -tocopherol, therefore, it is collected as the γ - δ -tocopherol-rich stream. The overall percentages and yields of each step are shown in the table below.

Ga	Gamma-delta Rich Product			
	Alpha	Gamma	Delta	Yield
Stage 1	76.41%	19.48%	4.12%	8.12%
Stage 2	0.00%	0.00%	0.00%	0.00%
Stage 3	5.29%	77.21%	17.50%	61.71%
Stage 4	0.50%	27.78%	71.72%	12.49%
Stage 5	1.00%	12.32%	86.67%	5.14%
Stage 6	8.00%	22.00%	70.00%	4.60%
Stage 7	-	-	-	-

Table 3: Chromatography Data for γ - δ -tocopherol Product

Producing 99% γ-tocopherol Product

To produce a product that is over 99% gamma-tocopherol, a strong basic anion exchange resin is used. It is important to use the strong anion resins in OH form due to

little adsorption when the resin is in Cl or other forms. Using non-polar solvents, such as alkanes, on a strong basic anion exchange, does not separate the tocopherols. The mobile phase is created by dissolving the tocopherol mixture in a polar solvent, methanol, in an 8:1 ratio. A HPLC column is slurry packed in water. The resin is flushed with 7 bed volumes of deionized

Figure 12. Loading for Strong Base Resin

water to remove all contaminants. Since most resins are sold in the Cl form, the resin is converted to OH form by passing 7 bed volumes of 4% sodium hydroxide. The resin is again washed with deionized water until the washing solution becomes neutral. Once the column is prepared, 58.5 liters of the mobile phase containing 7 kg of tocopherols is loaded. The mobile phase is then eluted by an eight stage process. Stages 1-6 are eluted

with 146 liters each of a 95% methanol and 5% acetone mixture. The addition of the ketone, acetone, modifies the polarity to suit desorption of γ -tocopherol. After 6 stages, the percentage δ -tocopherol is significantly reduced. Stage 7 consists passing a 146 liter mixture containing only 30% methanol and 70% acetone. This stage reduces the percentage of α -tocopherol to nearly 1%. The final stage, stage 8, cleans the resin by eluting 146 liters of pure methanol through the column. The exiting composition of the final stage

contains 99% γ -tocopherol with a 25% yield. The compositions of each stage are tabulated below.

Gamma Rich Product				
	Alpha	Gamma	Delta	Yield
Stage 1	97.63%	2.07%	0.30%	7.82%
Stage 2	0.00%	0.00%	0.00%	0.00%
Stage 3	58.93%	41.07%	0.00%	4.29%
Stage 4	28.93%	70.94%	0.12%	4.73%
Stage 5	14.07%	85.81%	0.11%	5.86%
Stage 6	6.18%	93.75%	0.07%	6.66%
Stage 7	1.92%	97.89%	0.18%	30.89%
Stage 8	0.91%	99.03%	0.06%	25.43%

Table 4. Chromatography Data for γ- tocopherol Product

Chromatography Plant Sizing

To determine the size of the chromatography plant, information provided by U.S. patent 6,867,308 was used. In this patent, small scale chromatography was used to separate the tocopherol homologues. The superficial velocity of the small scale chromatography was estimated to be 36 cm/hour. According to Harrison¹⁵, this value is assumed to be a standard velocity for small scale chromatography. Using the estimated velocity and the column diameter, 2.54 cm, the flowrate for the small scale column producing the γ - δ -tocopherol mixture is calculated by the following equation¹⁵:

Flowrate =
$$\pi * \frac{\text{InnerDiame ter}^2}{4} * \sup \text{ erficialve locity} = \pi * \frac{2.54^2}{4} * 36 \text{ cm} / h = 182.3 \text{ cm}^3 / h = 3 \text{ ml} / \min 100 \text{ min}^3 / h = 3 \text{$$

To scale the chromatography column the following equation is used:

$$\frac{Flowrate_1}{Volume_1} = \frac{Flowrate_2}{Volume_2}$$

Using this equation, a scale up factor is created by using a ratio of the flowrates: Q_2/Q_1 . Waters Corporation has a large scale HPLC column with a maximum flowrate of 2 liters/min, therefore, the scale up factor becomes: 2,000/3 = 658. The scale up factor is then multiplied to all volumes of the small scale process. These values are shown in the

table below.

Table 5. Scale Up Volumes

Scale Up Volumes To Produce			
	Gamma-de	elta Mixture	
Load:	32,909	ml	
	10,970	grams	
	Acetone (ml)	Heptane (ml)	Total (ml)
Stage 1	0	329,088	329,088
Stage 2	8,227	156,317	164,544
Stage 3	8,227	156,317	164,544
Stage 4	8,227	156,317	164,544
Stage 5	8,227	156,317	164,544
Stage 6	230,361	98,726	329,088
Stage 7	0	329,088	329,088
Totals	263,270	1,382,168	1,645,439

Table 6. Run Times For Scale Up Volumes

Run 1	: Fime For Ga	Scale Up Volume mma-delta Mixtu	es To Produce re
Run time:	Load Elute Clean	16.45439 min 658.1754 min 164.5439 min	
Total		839.1737 min>	13.98623 hours

With a flowrate of 2 liters/min, each chromatography batch run will take approximately 14 hours. Therefore 18.8 kg/day of tocopherol mixture is processed per column. To process the maximum capacity of 24,750 kg/day of tocopherol mixture per day 1,315 columns are required. The same method was applied to the 99% γ -tocopherol product where the scale up factor was found to be 293. However, to produce 1,000 kg per year of γ -tocopherol only 6,666 kg of the tocopherol mixture needs to be processed. To process the 6,666 kg per year, only 1 column is needed.

Distillation of Chromatography Products

The product streams coming from the chromatography columns were produced by eluting with various solvents. These solvents include acetone, heptane, and methanol. In order to sell the tocopherol mixture these solvents must be removed. The boiling points of these solvents vary from 55°C to 100°C at 760 mmHg. That is a significant difference from the boiling points of the tocopherol homologues which boil between the temperatures of 200°C and 220°C at 1 mmHg. Utilizing this difference, the product streams are sent through a distillation column where the solvents are evaporated and recycled for repeated use in the chromatography process. After evaporating the solvents, the tocopherols are purified and ready for commercial use.

Economic Analysis

Plant Design Selection

Production Rates Considered

Numerous parameters were considered when selecting the plant designs. The tocopherol processing facility could be designed to produce solely α -rich tocopherol, as shown in Figure 14, both α and δ - γ -rich tocopherol, as shown in Figure 15, only α and 99.9% pure γ tocopherol, Figure 16, or a combination of all three products, Figure 17.

Figure 14: Production of α -rich tocopherol

Figure 15: Production of Gamma-Delta Tocopherol with Alpha-rich Byproduct

Figure 16: Production of 99.9% Pure Gamma Tocopherol with Alpha-rich Byproduct

Figure 17: Production of Pure Gamma, Gamma-Delta, and Alpha-rich Tocopherols

The sales of α -tocopherol mixtures over the past several years have been declining rapidly, (Appendix C), presumably due to the association between α -tocopherol and heart disease. In addition, the sales prices of γ - δ and pure γ -tocopherol, \$350/kg and \$100,000/kg respectively, are significantly higher than the sales price of α -rich

tocopherol, \$44/kg. For these reasons, and due to the fact that producing δ - γ and γ tocopherol yields an α -rich byproduct, all of the tocopherol mixture produced by enzymatic distillation was processed to produce either δ - γ or pure γ -tocopherol. Pure γ tocopherol is used primarily in research, and its market is relatively small. For this reason, the amount of pure γ -tocopherol produced for all designs was limited to 1,000kg/yr or less. Five plant designs were considered for the process. Designs 1 through 4 produce 1, 10, 100, and 1,000kg of pure γ -tocopherol per year, respectively. In order to determine whether the additional capital and operating costs required to produce pure γ tocopherol were worth the additional revenue, a control model, Design 5, produces only γ - δ -tocopherol and an α -rich byproduct. The total production rates for all designs are shown in Table 7. The life spans for all five plants were assumed to be 10 years, based on the average life span of industrial chromatography columns.

	Production Rate	s (kg/yr)		
Design Scheme	Pure Gamma	Gamma-Delta	Alpha-Rich	Sterol Esters
1	1	5510585	3523164	90337500
2	10	5510563	3523177	90337500
3	100	5510344	3523307	90337500
4	1000	5508148	3524603	90337500
5	0	5510588	3523163	90337500

Table 7. Product Rates

Use of Methanol for Distillation

Both methanol and water may be used for distillation of SODD. However, using methanol for distillation results in a significantly higher concentration of the tocopherol product stream (75% tocopherols), than is obtained when water is used for distillation (60% tocopherols). The remainder of the product stream is comprised primarily of sterol

esters and free fatty acids. Processing streams containing high concentrations of free fatty acids and sterol esters can damage chromatography equipment. In addition, processing streams with low tocopherol concentrations necessitates increasing the number of columns in order to attain the same amount of tocopherol product that would be produced by processing a stream with a high tocopherol concentration. For these reasons, methanol was used for distillation in all 5 design schemes.

Product Prices

The estimated product sales prices for the next ten years are listed in Table 8. The sales price of α -tocopherol, currently \$44/kg, is expected to decrease over the next 10 years, due to its association with an increased risk of heart disease. For this reason, a 10%decrease in sale price per year was assumed. Because γ - δ -tocopherol may be used as a substitute for α -rich tocopherol, demand is expected to increase over the next 5 years, driving prices up. However, as more production facilities shift their focus toward producing γ -d-tocopherols, supply will increase, and competition will drive the price down. Based on these assumptions, the sales price of γ -d-tocopherol was predicted to increase by 5% per year for the first five years, then decrease at a rate of 10% per year for the remaining 5 years. The market for pure γ -tocopherol, which is relatively small, may expands slightly, but various facilities are currently competing for the available market share, and increasing production capacity would be relatively simple for established companies. Therefore, competition among suppliers should result in a decrease in sales price, and a price decrease of 10% per year was assumed. The sales price of a mixture of sterol esters and free fatty acids is currently \$0.10/kg. Because this price is relatively

small, it was assumed to be constant over the next ten years. All calculations involving sales prices assume a 50% standard deviation.

	Product Sales Prices				
	α-rich	γ-δ-	Pur	е γ-	Sterol
Year	mixture	tocopherol	toco	opherol	Esters
1	\$44	\$350	\$	100,000	\$0.10
2	\$40	\$368	\$	90,000	\$0.10
3	\$36	\$386	\$	81,000	\$0.10
4	\$32	\$405	\$	72,900	\$0.10
5	\$29	\$425	\$	65,610	\$0.10
6	\$26	\$382	\$	59,049	\$0.10
7	\$23	\$364	\$	53,144	\$0.10
8	\$21	\$346	\$	47,830	\$0.10
9	\$19	\$328	\$	43,047	\$0.10
10	\$17	\$312	\$	38,742	\$0.10

Table 8. Product Sales Prices

Net Present Worth and Return on Investment

The net present worth for all five designs are shown in Table 9, below:

Table 9.		
	kg/yr Pure	NPW
Design	γ-tocopherol	(Billions)
1	1	\$928,163,987
2	10	\$930,839,273
3	100	\$957,592,140
4	1000	\$1,225,120,803
5	0	\$930,424,966

As evidenced, the highest net present worth was obtained by producing the highest amount of pure γ -tocopherol. The net present worth increased as production of γ -tocopherol increased, with one exception: The net present worth for Design 1 (1kg/yr γ -tocopherol) was lower than the net present worth for Design 5 (0 kg/yr γ -tocopherol). The amount of revenue generated annually by selling 1 kg/yr was not significant enough to

make up for the additional capital investment required for the γ -tocopherol chromatography process.

The annual return on investment for each Design is shown in Table 10. The return on investment is consistently highest for Design 4 (1000 kg/yr), and consistently lowest for Designs 1 and 5. The return on investment for the first year is the most accurate, as the prices are based on current market prices, whereas the sales prices for years 2 through 10 are based on estimates.

	Return on Investment (Dollars per Dollar Invested)						
	Design 1	Design 2	Design 3	Design 4	Design 5		
Year	(1 kg/yr)	(10 kg/yr)	(100 kg/yr)	(1000 kg/yr)	(0 kg/yr)		
1	\$0.13	\$0.13	\$0.13	\$0.15	\$0.13		
2	\$0.15	\$0.15	\$0.15	\$0.17	\$0.15		
3	\$0.17	\$0.17	\$0.17	\$0.19	\$0.17		
4	\$0.19	\$0.19	\$0.19	\$0.21	\$0.19		
5	\$0.21	\$0.21	\$0.21	\$0.23	\$0.21		
6	\$0.16	\$0.16	\$0.16	\$0.17	\$0.16		
7	\$0.13	\$0.13	\$0.13	\$0.15	\$0.13		
8	\$0.11	\$0.11	\$0.11	\$0.12	\$0.11		
9	\$0.09	\$0.09	\$0.09	\$0.10	\$0.09		
10	\$0.06	\$0.06	\$0.07	\$0.07	\$0.06		

Table 10. Return on Investment

Risk Analysis

A risk analysis of the net present worth for each Design was performed using @Risk in Excel. The maximum, minimum, and mean net present worth for each design are depicted in Table 11. Design 4, which produced 1000kg/yr of g-tocopherol, had the highest value for the minimum, maximum, and mean net present worth. Design 1, which produced 1 kg γ -tocopherol per year, had the lowest minimum, maximum, and mean net present worth. With this exception, the net present worth increased as γ -tocopherol production increased.

	NPW (in Billions)							
	Design 1 (1 kg/yr)	Design 2 (10 kg/yr)	Design 3 (100 kg/yr)	Design 4 (1000 kg/yr)	Design 5 (0 kg/yr)			
Minimum	-\$2.70	-\$2.70	-\$2.66	-\$2.27	-\$2.70			
Mean	\$0.93	\$0.94	\$0.96	\$1.23	\$0.94			
Maximum	\$5.53	\$5.53	\$5.55	\$5.81	\$5.53			

Table 11. Net Present Worth

Figure 18 depicts the risk curves for all five designs. As shown, the risks for Designs 1, 2, 3, and 5 are incredibly similar, while Design 4 has a higher probability to generate a profit than the other four designs.

Figure 18. Distribution for Net Present Worth

It is recommended that the γ -chromatography processes be built in addition to the γ - δ chromatography process. Though it would be profitable to produce solely γ - δ tocopherol, producing even minimal amounts of pure γ -tocopherol in addition to γ - δ -
tocopherol increases the overall profitability. In addition, profitability increases as the amount of γ -tocopherol produced increases.

GAMS Analysis

The price of pure γ -tocopherol is expected to fluctuate widely over the next several years, and accurately predicting future prices cannot be done with great certainty. Because prices are so uncertain, it is necessary to determine the maximum decrease in product cost that could be absorbed before γ -tocopherol production becomes less profitable than γ - δ -tocopherol production. GAMS modeling software was used to determine the minimum sales price of γ -tocopherol necessary for each system. For Design 1, which produces, 1 kg/yr of γ -tocopherol, the small-scale chromatography process is not profitable at current sales prices. Pure γ -tocopherol must be sold at \$603,365.22/kg in order for this design to be profitable. However, Design 2, which produces 10 kg/yr of pure γ -tocopherol, can absorb a significant drop in the sale price of γ -tocopherol: The product could be sold at \$60,398.62/kg, and the process would be as profitable as producing solely a γ - δ -mixture. Design 3 can accommodate an even larger price drop, falling to $\frac{6,245.96}{\text{kg}}$, before producing only γ - δ -tocopherol becomes more profitable. Design 4, the 1000 kg/yr system, can absorb the highest price drop. The sales price of pure γ -tocopherol could drop to \$830.70/kg before the process would be less profitable than producing only γ - δ -tocopherol.

Minimum Production for Profitability

Because not all of the pure γ -tocopherol producing designs were as profitable as Design 5, which produced no γ -tocopherol, calculations were performed using the Solver tool in Excel in order to determine the minimum production rate of γ -tocopherol. Assuming the depreciation rates, price fluctuations, and interest rates assumed for the net present worth calculations, 8.61kg/yr of pure γ -tocopherol must be produced in order for the small column chromatography to be as profitable as a system using only large scale chromatography.

FDA Regulations

Vitamins and other dietary supplements are regulated under different regulations than standard pharmaceuticals. The Dietary Supplement Health and Education Act of 1994 (DSHEA) states that dietary supplement manufacturer is responsible for ensuring the supplement is safe before it is marketed. The FDA is responsible for taking action against any unsafe dietary supplement product after it reaches the market. Post-marketing responsibilities include monitoring supplemental adverse reporting significant events, and providing information through labeling, claims, package inserts, and accompanying literature¹.

Proposed Improvements

Distillation

Immobilization of the *Candida rugosa* lipase could reduce the raw materials costs of the enzyme reactions. Microencapsulation in beads would be the best way to immobilize the lipase for use in the reactors, because they could be filtered out from the rest of the reaction mixture¹⁶. Currently polystyrene and chitosan are the most prevalent materials used to make enzyme immobilization beads¹⁷. With minimal loss of enzyme, the raw material costs for *Candida rugosa* lipase could be reduced from \$18-38 million to \$72-154 thousand per year. The cost to immobilize using Polystyrene beads¹⁸ would be \$216-\$462 thousand per year and \$112-\$240 thousand per year for Chitosan beads¹⁷. Taking into account both the immobilization beads and lipase costs, this is a significant reduction in yearly costs.

Drawbacks to using immobilization would be longer incubation times in the reactors and/or and increases in the amount of enzyme needed in each batch. This is because diffusion effects through the beads control the interaction times between the lipase and the substrates in the reactor. Filters would need to be employed in order to remove the enzyme beads before the process media is passed on to the next production apparatus. More reactors and/or larger reactors and filters could lead to an increase in capitol investment costs.

Chromatography

All natural sources that contain tocopherol also contain free fatty acids that can interfere with the separation process. Reducing the concentration of these acids in tocopherol mixtures leads to more effective separation. In addition, FFAs cause fouling in chromatography columns. Therefore, using mixtures with low FFA concentrations causes less fouling and extends column life. The feed material must have a pH value less than 10. A pH of 1 would be ideal, but columns operate reasonably at a pH of 3 or less. It is important to test the exiting distillation stream to accurately gauge the effectiveness of the chromatography. The number of chromatography columns needed for this process is extremely high. This is could be a result of the estimated superficial velocity of the small scale process.

Alternative Processes Affinity Chromatography

Affinity chromatography uses biomolecules that bind specifically to the target molecule to cause separation. Affinity chromatography typically uses ligands or antibodies to bind proteins. It would be possible to use an antibody or a protein whose substrate is α -tocopherol.

One protein that binds α -tocopherol over γ -tocopherol and δ -tocopherol is called α -tocopherol transfer protein. It can be separated from tissue or produced as a recombinant protein in *Escherichia coli*. The challenges of this approach would be attaching the protein to a support matrix and determining conditions for the initial elution of the tocopherol mixture, and the subsequent desorption of α -tocopherol from the solid

phase. The conditions would have to be gentle enough not to denature the proteins. The column lifetime would be a critical factor in determining the economic viability of the column. Once the solid phase and elution conditions were designed, isotherms and permeability would have to be determined experimentally. Then, scale-up calculations could be performed. This process is based upon the assumption that δ -tocopherol does not interfere with γ -tocopherol and has no detrimental health effects, so removing the δ homologue would not be necessary.

Bioprocessing

One possible method for producing various tocopherol mixtures is bioprocessing. To produce tocopherols using biosynthesis, the biological pathway that produces tocopherols in plants must studied and mapped. From this information, the necessary steps, ingredients, and environments conducive to tocopherol production could be determined. These parameters could then be applied to a genetically manipulated bacterium that would produce tocopherols. Through experiments, conditions could be altered to produce the tocopherol homologue desired. Through extensive research, this process could prove to be an economically efficient approach to produce tocopherol homologues.

Genetic Engineering

Genetically engineered foods are produced from crops whose genetic makeup has been altered through a process known as gene splicing, to give the plant a desirable trait. In most cases this approach has been used to make plants resistant to common diseases and to become more productive. However, soybeans and other tocopherol producing vegetables can be altered to produce a specific tocopherol. This is an in-depth process that requires research into the biological pathway of tocopherols. The benefit of this process is that once the plant produces a specific tocopherol homologues, for example γ -tocopherol, no further tocopherol separation steps are required. These separation processes are extremely costly; therefore, a genetically engineered plant such as soybeans would be an economically viable option.

Appendices

Appendix A – Key Terms

<u>Candida rugosa</u> – an enzyme most normally used to hydrolize acylglycerols. It is also has the ability to bond organic acids and alcohols to make esters.

<u>Ester</u> - Any of a class of organic compounds corresponding to the inorganic salts and formed from an organic acid and an alcohol.

<u>Glycerol</u> - A syrupy, sweet, colorless or yellowish liquid, C3H8O3, obtained from fats and oils as a byproduct of saponification and used as a solvent, an antifreeze, a plasticizer, and a sweetener and in the manufacture of dynamite, cosmetics, liquid soaps, inks, and lubricants.

<u>Hydrolysis</u> - Decomposition of a chemical compound by reaction with water, such as the dissociation of a dissolved salt or the catalytic conversion of starch to glucose.

Hydrolysis

Where R₁, R₂, and R₃ are fatty acid residues.

<u>Isocratic</u> - same solvent strength

<u>Lipid</u> - Any of a group of organic compounds, including the fats, oils, waxes, sterols, and triglycerides that are insoluble in water but soluble in nonpolar organic solvents, are oily

to the touch, and together with carbohydrates and proteins constitute the principal structural material of living cells.

<u>Lipophilic</u> - Having an affinity for, tending to combine with, or capable of dissolving in lipids

<u>Reverse phase chromatography</u> – During regular chromatography the media (solvent or buffer) is not polar and the gel is polar. While in reverse phase the media is polar and the gel is not polar.

<u>Sterol</u> - Any of a group of solid, cyclic, unsaturated alcohols, with a complex structure that includes four carbon rings; cholesterol is an example. Steroids are derived from sterols.

<u>Triglyceride</u> - A naturally occurring ester of three fatty acids and glycerol that is the chief constituent of fats and oils.

Appendix B- Chemical properties

Acylglycerols

Acylglycerol is a molecule of glycerol that has had one or more of the hydroxyl groups replaced with a fatty acid residues. They are formed during a dehydration reaction between glycerol and fatty acids. In biological systems, this reaction is catalyzed by a lipase.

>>> The R groups in the following structures are the carbon tails of fatty acid residues<<<<

Mono-acylglycerols

http://www.med.uiuc.edu/m1/biochemistry/TA%20reviews/sam/FAmetaboli sm.htm

Di-acylglycerols

http://www.med.uiuc.edu/m1/biochemistry/TA%20reviews/sam/FAmetaboli sm.htm

Tri-acylglycerols

$$\begin{array}{c} & & \\ & & \\ CH_2-O-C-CH_2-R_1 \\ & \\ & \\ CH-O-C-CH_2-R_2 \\ & \\ CH_2-O-C-CH_2-R_3 \end{array}$$

http://www.med.uiuc.edu/m1/biochemistry/TA%20reviews/sam/FAmetaboli sm.htm

Free Fatty Acids (FFA)

Lauric Acid

 $HO_2C-(CH_2)_{10}-Me$

Structure

Formula: C12 H24 O2

Calculated		
Property	Value	Condition
Bioconc. Factor	3900	pH 1
Bioconc. Factor	3350	pH 4
Bioconc. Factor	23.8	, pH 7
Bioconc. Factor	2.67	рН 8
Bioconc. Factor	1	рН 10
Boiling Point	296.1±3.0 °C	Press: 760 Torr
Enthalpy of Vap.	56.59±3.0 kJ/mol	
Flash Point	134.1±21.4 °C	
H acceptors	2	
H donors	1	
Кос	12900	pH 1
Кос	11100	pH 4
Кос	78.9	pH 7
Кос	8.86	pH 8
Кос	1.11	pH 10
logD	5.03	pH 1
logD	4.96	pH 4
logD	2.81	pH 7
logD	1.86	pH 8
logD	0.96	pH 10
logP	5.028±0.185	
Molar Solubility	Sparingly Soluble	pH 1
Molar Solubility	Sparingly Soluble	pH 4
Molar Solubility	Sparingly Soluble	pH 7
Molar Solubility	Slightly Soluble	pH 8
Molar Solubility	Soluble	pH 10
Molecular Weight	200.32	
рКа	4.78±0.20	Most Acidic
Vapor Pressure	6.61E-4 Torr	Temp: 25 °C
	Experimental	
Property	Value	Condition
Boiling Point	223 °C	Press: 100 Torr
Boiling Point	167-168 °C	Press: 8 Torr
Boiling Point	160-165 °C	Press: 20 Torr
		11000.201011

Boiling Point	145 °C	Press: 0.37 Torr
Boiling Point	95-100 °C	Press: 0.2 Torr
Melting Point	56-57 °C	
Melting Point	45 °C	
Melting Point	44.5-44.8 °C	
Melting Point	44-45 °C	
Melting Point	44 °C	
Melting Point	43.0-43.5 °C	
Melting Point	42-44 °C	
Melting Point	41-43 °C	
Melting Point	41-43 °C	
Melting Point	41-43 °C	
Melting Point	40-42 °C	

Linoleic Acid

Structure

Formula: C18 H32 O2

Calculated			
<u>Property</u>	<u>Value</u>	Condition	
Bioconc. Factor	1.68E5	pH 1	
Bioconc. Factor	1.44E5	pH 4	
Bioconc. Factor	1020	рН 7	
Bioconc. Factor	114	pH 8	
Bioconc. Factor	14.4	pH 10	
Boiling Point	360.6±0.0 °C	Press: 760 Torr	
Enthalpy of Vap.	66.60±6.0 kJ/mol		
Flash Point	273.0±25.9 °C		
H acceptors	2		
H donors	1		
Кос	1.91E5	pH 1	
Кос	1.64E5	pH 4	
Кос	1160	рН 7	
Кос	130	pH 8	
Кос	16.4	pH 10	
logD	7.18	pH 1	
logD	7.11	pH 4	
logD	4.96	рН 7	
logD	4.01	pH 8	
logD	3.11	pH 10	
logP	7.180±0.256		

Molar Solubility Molar Solubility Molar Solubility Molar Solubility Molar Solubility Molecular Weight pKa Vapor Pressure	Sparingly Soluble Sparingly Soluble Sparingly Soluble Sparingly Soluble Sparingly Soluble 280.45 4.78±0.20 3.54E-6 Torr	pH 1 pH 4 pH 7 pH 8 pH 10 Most Acidic Temp: 25 °C
	Experimental	
Property	Value	Condition
Boiling Point	195-205 °C	Press: 1 Torr
Boiling Point	179-183 °C	Press: 0.8 Torr
Boiling Point	179-183 °C	Press: 0.8 Torr
Boiling Point	177 °C	Press: 0.5 Torr
Boiling Point	148.1-150.7 °C	Press: 0.21 Torr
Boiling Point	148.1-150.7 °C	Press: 0.21 Torr
Boiling Point	141-144 °C	Press: 0.17 Torr
Density	0.9122 g/cm3	Temp: 20 °C
Density	0.9016 g/cm3	Temp: 20 °C
Melting Point	-5.2-5 °Č	Solv: ligroine
-		(8032-32-4)
Melting Point	-5.4 °C	Solv: ligroine
-		(8032-32-4)
Melting Point	-8.8-7.1 °C	
Refractive Index	1.4699	Temp: 20 °C

Oleic Acid

Structure

Formula: C18 H34 O2

Calculated		
Property	<u>Value</u>	Condition
Bioconc. Factor	4.16E5	pH 1
Bioconc. Factor	3.57E5	pH 4
Bioconc. Factor	2510	pH 7
Bioconc. Factor	283	pH 8
Bioconc. Factor	35.6	pH 10
Boiling Point	360.0±0.0 °C	Press: 760 Torr
Enthalpy of Vap.	66.53±6.0 kJ/mol	
Flash Point	270.1±25.9 °C	
H acceptors	2	
H donors	1	
Koc	3.66E5	pH 1
Кос	3.14E5	pH 4

Koc Koc logD logD logD logD logD logD logP Molar Solubility Molar Solubility Molar Solubility Molar Solubility Molar Solubility Molar Solubility Molar Solubility Molar Solubility	2210 249 31.3 7.70 7.63 5.48 4.53 3.63 7.698±0.199 Sparingly Soluble Sparingly Soluble	pH 7 pH 8 pH 10 pH 1 pH 4 pH 7 pH 8 pH 10 pH 1 pH 4 pH 7 pH 8 pH 7 pH 8 pH 10 Most Acidic
Vapor Pressure	3.70E-6 Torr	Temp: 25 °C
Property Boiling Point Boiling Point Boiling Point Boiling Point Boiling Point Boiling Point Boiling Point Boiling Point Boiling Point Density Electric Resistivity Melting Point Melting Point Melting Point Melting Point	Experimental <u>Value</u> 230 °C 213-216 °C 210-212 °C 205-210 °C 204-206 °C 196-210 °C 195-197 °C 170-173 °C 43-49 °C 0.8871 g/cm3 10-14 ohm*cm 16 °C 13.3 °C 13 °C 12 °C	Condition Press: 15 Torr Press: 5 Torr Press: 4 Torr Press: 5 Torr Press: 2 Torr Press: 2 Torr Press: 2 Torr Press: 0.25 Torr Press: 100 Torr Temp: 20 °C

Palmitic Acid

Structure

 $HO_2C^-(CH_2)_{14}-Me$

Formula: C16 H32 O2

Properties

Property

Calculated <u>Value</u>

Condition

Bioconc. Factor Bioconc. Factor Bioconc. Factor Bioconc. Factor Bioconc. Factor Boiling Point Enthalpy of Vap. Flash Point H acceptors H donors	1.61E5 1.38E5 974 109 13.7 340.6±5.0 °C 61.66±3.0 kJ/mol 154.1±22.4 °C 2	pH 1 pH 4 pH 7 pH 8 pH 10 Press: 760 Torr
Koc Koc Koc Koc IogD IogD IogD IogD IogD IogP	1.85E5 1.59E5 1120 126 15.8 7.15 7.09 4.93 3.99 3.08 7.154±0.185	pH 1 pH 4 pH 7 pH 8 pH 10 pH 1 pH 4 pH 7 pH 8 pH 10
Molar Solubility Molar Solubility Molar Solubility Molar Solubility Molar Solubility Molecular Weight	Sparingly Soluble Sparingly Soluble Sparingly Soluble Sparingly Soluble 256.42	pH 1 pH 4 pH 7 pH 8 pH 10
pka Vapor Pressure	4.78±0.20 3.28E-5 Torr	Temp: 25 °C
pka Vapor Pressure <u>Property</u> Boiling Point Melting Point	4.76±0.20 3.28E-5 Torr Experimental <u>Value</u> 352.3 °C 64 °C	Most ActualTemp: 25 °CConditionSolv: hexane(110-54-3)benzene(71-43-2)
Property Boiling Point Melting Point	4.76±0.20 3.28E-5 Torr Experimental <u>Value</u> 352.3 °C 64 °C 63 °C 62.5 °C 62-63 °C 61-64 °C 61-63 °C 60-62 °C 60-62 °C 60-62 °C 60-62 °C 60-62 °C 60-62 °C	Temp: 25 °C <u>Condition</u> Solv: hexane (110-54-3) benzene (71-43-2)

Stearic Acid

Structure

$HO_2C^-(CH_2)_{16}-Me$

Formula: C18 H36 O2

Calculated			
Property Bioconc. Factor Bioconc. Factor Bioconc. Factor Bioconc. Factor Bioconc. Factor Boiling Point Enthalpy of Vap. Flash Point H acceptors	Value 1.03E6 8.84E5 6250 702 88.2 359.4±5.0 °C 63.84±3.0 kJ/mol 162.4±22.4 °C 2	<u>Condition</u> pH 1 pH 4 pH 7 pH 8 pH 10 Press: 760 Torr	
H donors Koc Koc Koc Koc IogD IogD IogD	1 7.01E5 6.01E5 4250 477 60.0 8.21 8.15 6.00	pH 1 pH 4 pH 7 pH 8 pH 10 pH 1 pH 4 pH 7	
logD logD Molar Solubility Molar Solubility Molar Solubility Molar Solubility Molar Solubility Molecular Weight pKa Vapor Pressure	5.05 4.15 8.216±0.186 Sparingly Soluble Sparingly Soluble Sparingly Soluble Sparingly Soluble Sparingly Soluble 284.48 4.78±0.20 8.58E-6 Torr	pH 8 pH 10 pH 1 pH 4 pH 7 pH 8 pH 10 Most Acidic Temp: 25 °C	
Property Boiling Point Boiling Point Boiling Point Density Electric Resistivity Melting Point Melting Point	Experimental <u>Value</u> 465 °C 376 °C 232 °C 0.96 g/cm3 10-14 ohm*cm 71.5 °C 70-73 °C	<u>Condition</u> Press: 760 Torr Press: 15 Torr Solv: chloroform	

	(67-66-3) methanol
	(67-56-1)
69.9 °C	
69-70 °C	
69-70 °C	
69 °C	
69 °C	
68-70 °C	
68-70 °C	
68 °C	
66 °C (polymorph)	
65-69 °C	
65 °C	
	69.9 °C 69-70 °C 69-70 °C 69 °C 69 °C 68-70 °C 68-70 °C 68 °C 66 °C (polymorph) 65-69 °C 65 °C

Arquidic Acid

Tocopherols

Alpha Tocopherol

Structure

	Calculated	
Property Property	<u>Value</u>	Condition
Bioconc. Factor	1.00E6	pH 1
Bioconc. Factor	1.00E6	pH 4
Bioconc. Factor	1.00E6	pH 7
Bioconc. Factor	1.00E6	pH 8
Bioconc. Factor	1.00E6	pH 10
Boiling Point	529.5±35.0 °C	Press: 760 Tor
Enthalpy of Vap.	83.48±3.0 kJ/mol	
Flash Point	210.2±36.3 °C	

H acceptors	2	
H donors	1	
Кос	1.00E7	pH 1
Кос	1.00E7	pH 4
Кос	1.00E7	pH 7
Кос	1.00E7	pH 8
Кос	1.00E7	pH 10
logD	11.86	pH 1
logD	11.86	pH 4
logD	11.86	pH 7
logD	11.86	pH 8
logD	11.84	pH 10
logP	11.862±0.268	
Molar Solubility	Sparingly Soluble	pH 1
Molar Solubility	Sparingly Soluble	pH 4
Molar Solubility	Sparingly Soluble	pH 7
Molar Solubility	Sparingly Soluble	pH 8
Molar Solubility	Sparingly Soluble	pH 10
Molecular Weigh	nt	430.71
рКа	11.40±0.20	Most Acidic
Vapor Pressure	7.93E-12 Torr	Temp: 25 °C
	Even a vive a setal	

	Experimental		
Property	<u>Value</u>	Condition	<u>Note</u>
Optical Rotato	ory Power	-2.76 ° g/100mL Temp: 20 °C	Conc: 1.07

Beta-Tocopherol

Structure

Property	Value	Condition
Bioconc. Factor	1.00E6	pH 1
Bioconc. Factor	1.00E6	pH 4

Bioconc. Factor Bioconc. Factor Bioconc. Factor Boiling Point	1.00E6 1.00E6 1.00E6 516 3+35 0 °C	pH 7 pH 8 pH 10 Press: 760.0
Doning Fonit	510.5±55.0 0	Torr
Enthalpy of Vap.	81.81±3.0 kJ/mol	
Flash Point	204.7±36.3 °C	
H acceptors	2	
H donors	1	
KOC Koo	1.00E7	
Koc	1.00E7	ρ⊓ 4 n∐ 7
Koc	1.00E7	pH 8
Koc	1.00E7	pH 10
logD	11.40	pH 10
logD	11.40	pH 4
logD	11.40	, pH 7
logD	11.40	pH 8
logD	11.36	pH 10
logP	11.402±0.266	
Molar Solubility	Sparingly Soluble	рН 1
Molar Solubility	Sparingly Soluble	pH 4
Molar Solubility	Sparingly Soluble	pH 7
Molar Solubility	Sparingly Soluble	pH 8
Molar Solubility	Sparingly Soluble	рН 10
wolecular weight		Most Asidia
una Vapor Proseuro	11.00 ± 0.20	Tomp: 25.0 °C
vapor riessure	2.000-11 1011	remp. 25.0 C

Gamma Tocopherol

Structure

Formula: C28 H48 O2

	Calculated	
Property	<u>Value</u>	Condition Note
Bioconc. Factor	1.00E6	pH 1
Bioconc. Factor	1.00E6	pH 4
Bioconc. Factor	1.00E6	pH 7
Bioconc. Factor	1.00E6	pH 8
Bioconc. Factor	1.00E6	pH 10
Boiling Point	518.1±35.0 °C	Press: 760 Torr

Enthalpy of Vap.	82.04±3.0 kJ/mol	
Hacceptors	200.0130.3 C	
H donors	1	
Koc	1.00E7	рН 1
Koc	1.00E7	pH 4
Кос	1.00E7	pH 7
Кос	1.00E7	pH 8
Кос	1.00E7	pH 10
logD	11.40	pH 1
logD	11.40	pH 4
logD	11.40	pH 7
logD	11.40	pH 8
logD	11.36	pH 10
logP	11.402±0.266	
Molar Solubility	Sparingly Soluble	рН 1
Molar Solubility	Sparingly Soluble	pH 4
Molar Solubility	Sparingly Soluble	pH 7
Molar Solubility	Sparingly Soluble	pH 8
Molar Solubility	Sparingly Soluble	рН 10
Molecular Weight	416.68	
рКа	11.05±0.20	Most Acidic
Vapor Pressure	2.35E-11 Torr	Temp: 25 °C

Delta Tocopherol

Structure

Formula:	C27 H46 O2

	Calculated	
Property erected	<u>Value</u>	Condition Note
Bioconc. Factor	1.00E6	pH 1
Bioconc. Factor	1.00E6	pH 4
Bioconc. Factor	1.00E6	pH 7
Bioconc. Factor	1.00E6	pH 8
Bioconc. Factor	1.00E6	pH 10
Boiling Point	504.3±35.0 °C	Press: 760 Torr
Enthalpy of Vap.	80.31±3.0 kJ/mol	

Flash Point	200.1±36.3 °C	
H acceptors	2	
H donors	1	
Кос	1.00E7	pH 1
Кос	1.00E7	pH 4
Кос	1.00E7	pH 7
Кос	1.00E7	pH 8
Кос	1.00E7	pH 10
logD	10.94	pH 1
logD	10.94	pH 4
logD	10.94	pH 7
logD	10.94	pH 8
logD	10.86	pH 10
logP	10.942±0.264	-
Molar Solubility	Sparingly Soluble	pH 1
Molar Solubility	Sparingly Soluble	pH 4
Molar Solubility	Sparingly Soluble	pH 7
Molar Solubility	Sparingly Soluble	pH 8
Molar Solubility	Sparingly Soluble	pH 10
Molecular Weight	402.65	-
рКа	10.70±0.20	Most Acidic
Vapor Pressure 8.54E	-11 Torr Temp	o: 25 °C

<u>Sterols</u>

Beta-Sitosterol

Product identification cas no.

83-46-5

 Einecs no.
 201-480-6

 Formula
 C29H50O

 Mol wt.
 414.71

Synonyms stigmast-5-en-3beta-ol;

22,23-dihydro-stigmasterol; beta-sitosterin; angelicin; cinchol; cupreol; rhamnol; (3beta)-stigmast-5-en-3-ol; alpha-dihydrofucosterol; quebrachol; 24alphaethylcholesterol; 5-cholesten-24beta-ethyl-3beta-ol; stigmast-5-en-3-ol;

Physical and chemical properties Physical state white solid Melting point 130 - 145 c Solubility in water insoluble Nfpa ratings health: 1; flammability: 0; reactivity: 0 Stability stable under normal conditions

Brassicasterol

Structure

Formula: C28 H46 O

Calculated		
Property Property	Value	Condition
Bioconc. Factor	1.00E6	pH 1
Bioconc. Factor	1.00E6	pH 4
Bioconc. Factor	1.00E6	pH 7
Bioconc. Factor	1.00E6	pH 8
Bioconc. Factor	1.00E6	pH 10
Boiling Point	488.7±14.0 °C	Press: 760 Torr
Enthalpy of Vap.	86.96±6.0 kJ/mol	
Flash Point	213.4±22.2 °C	
H acceptors	1	
H donors	1	
Кос	4.38E6	pH 1
Кос	4.38E6	pH 4

Кос	4.38E6	pH 7
Кос	4.38E6	pH 8
Кос	4.38E6	pH 10
logD	9.68	pH 1
logD	9.68	pH 4
logD	9.68	pH 7
logD	9.68	pH 8
logD	9.68	pH 10
logP	9.679±0.296	
Molar Solubility	Sparingly Soluble	pH 1
Molar Solubility	Sparingly Soluble	pH 4
Molar Solubility	Sparingly Soluble	pH 7
Molar Solubility	Sparingly Soluble	pH 8
Molar Solubility	Sparingly Soluble	pH 10
Molecular Weight	398.66	
Vapor Pressure	1.34E-11 Torr	Temp: 25 °C

Experimental

Property	<u>Value</u>
Melting Point	184-186 °C
Melting Point	150-151 °C
Melting Point	149-151 °C
Melting Point	145 °C

Campesterol

Structure

Condition

Formula: C28 H48 O

Properties

	Calculated
Property	<u>Value</u>
Bioconc. Factor	1.00E6

<u>Condition</u> pH 1

Bioconc. Factor Bioconc. Factor Bioconc. Factor Bioconc. Factor Boiling Point	1.00E6 1.00E6 1.00E6 1.00E6 489.5±14.0 °C	pH 4 pH 7 pH 8 pH 10 Press: 760 Torr
Enthalpy of Vap.	87.08±6.0 kJ/mol	
Flash Point	214.3±22.2 °C	
H acceptors	1	
Koc	1 8 38E6	nH 1
Koc	8.38E6	pH 4
Koc	8.38E6	рн 1 рН 7
Koc	8.38E6	8 Hq
Кос	8.38E6	, pH 10
logD	10.20	pH 1
logD	10.20	рН 4
logD	10.20	pH 7
logD	10.20	pH 8
logD	10.20	рН 10
logP Malan Qalakilita	10.198±0.287	
Molar Solubility	Sparingly Soluble	pH 1
Molar Solubility	Sparingly Soluble	pπ 4 n⊔ 7
Molar Solubility	Sparingly Soluble	рп / рН 8
Molar Solubility	Sparingly Soluble	pH 10
Molecular Weight	400 68	pri to
Vapor Pressure	1.23E-11 Torr	Temp: 25 °C
Property	Experimental Value	Condition
Melting Point	158-159 °C	<u></u>
Melting Point	158-159 °C	
Melting Point	157.5-158.0 °C	
Melting Point	155-156 °C	
Melting Point	155.0-155.5 °C	
Melting Point	152 °C	
Melting Point	140-141 °C	
Optical Rotatory Powe	er	-33 °

Stigmasterol

Structure

Formula: C29 H48 O

Properties

	Calculated			
Property Property	<u>Value</u>	Condition	Note	
Bioconc. Factor	1.00E6	pH 1	(1) ACD	
Bioconc. Factor	1.00E6	pH 4	(1) ACD	
Bioconc. Factor	1.00E6	pH 7	(1) ACD	
Bioconc. Factor	1.00E6	pH 8	(1) ACD	
Bioconc. Factor	1.00E6	pH 10	(1) ACD	
Boiling Point	501.1±19.0 °C	Press: 760 Torr	(1) ACD	
Enthalpy of Vap.	88.66±6.0 kJ/mol		(1) ACD	
Flash Point	219.4±24.7 °C		(1) ACD	
H acceptors	1		(1) ACD	
H donors	1		(1) ACD	
Кос	8.52E6	pH 1	(1) ACD	
Кос	8.52E6	pH 4	(1) ACD	
Кос	8.52E6	pH 7	(1) ACD	
Кос	8.52E6	рН 8	(1) ACD	
Кос	8.52E6	pH 10	(1) ACD	
logD	10.21	pH 1	(1) ACD	
logD	10.21	pH 4	(1) ACD	
logD	10.21	pH 7	(1) ACD	
logD	10.21	pH 8	(1) ACD	
logD	10.21	pH 10	(1) ACD	
logP	10.211±0.296		(1) ACD	
Molar Solubility	Sparingly Soluble	pH 1	(1) ACD	
Molar Solubility	Sparingly Soluble	pH 4	(1) ACD	
Molar Solubility	Sparingly Soluble	рН 7	(1) ACD	
Molar Solubility	Sparingly Soluble	рН 8	(1) ACD	
Molar Solubility	Sparingly Soluble	pH 10	(1) ACD	
Molecular Weigh	t	412.69		(1) ACD
Vapor Pressure	3.84E-12 Torr	Temp: 25 °C	(1) ACD	

Experimental

<u>Property</u> Melting Point	<u>Value</u> 170-172 °C	Condition Solv: acetone (67-64-1)	Note (2) CAS
Melting Point	170 °C	` ,	(3) CAS
Melting Point	170 °C	Salur agatana	(4) CAS
weiting Point	109-171 C	(67-64-1)	(5) CAS
Melting Point	169-170 °C	(01 01 1)	(6) CAS
Melting Point	168.5 °C	Solv: methanol (67-56-1) ethyl ether (60-29-7)	(7) CAS
Melting Point	168-170 °C		(8) CAS
Melting Point	168-169 °C	Solv: methanol (67-56-1)	(9) CAS
Melting Point	168 °C	Solv: methanol (67-56-1) ethyl ether	(7) CAS
Melting Point	168 °C	(60-29-7)	(10) CAS
Melting Point	167-169 °C	Solv: methanol (67-56-1)	(11) CAS
Melting Point	167-168 °C	(, , , , , , , , , , , , , , , , , , ,	(12) CAS
Melting Point	167 °C	Solv: methanol (67-56-1)	(13) CAS
Melting Point	166.5-168.0 °C		(14) CAS
Melting Point	166-168 °C		(15) CAS
Melting Point	165-170 °C		(16) CAS (17) CAS
Melting Point	165-166 °C		(17) CAS (18) CAS
Melting Point	164-166 °C		(19) CAS
Melting Point	164-166 °C		(20) CAS
Melting Point	163-165 °C		(21) CAS
Melting Point	162-164 °C		(22) CAS
Melting Point	155-156 °C		(23) CAS
Melting Point	153-154 °C		(24) CAS
Melting Point	141-142 °C		(25) CAS (26) CAS
Melting Point	136-138 °C		(20) CAS (27) CAS
Melting Point	136-138 °C	Solv: ethvl	(28) CAS
J		acetate	
		(141-78-6)	
Melting Point	135-137 °C		(29) CAS
Melting Point	135-137 °C		(30) CAS
Melting Point	123-125 °C	25 °	(31) CAS
Oplical Rolatory	Power	-35 nm	Wavien. 569.3 (26) CAS
Optical Rotatory	Power	Temp: 24 °C -42 ° (67-66-3) Wavlen: 5800	Solv: chloroform (20) CAS
Optical Rotatory	Power	nm Temp: 18 °C -42.9 ° g/100mL Solv: chloroform	Conc: 1.2 (32) CAS

Optical Rotatory Power	(67-66-3) Wavlen: 589.3 nm Temp: 27 °C -46 ° g/100mL Solv: chloroform (67-66-3) Wavlen: 589.3 nm	Conc: 0.1	(33) CAS
Optical Rotatory Power	Temp: 20 °C -50 ° (67-66-3) Wavlen: 589.3	Solv: chloroform	(9) CAS
Optical Rotatory Power	-50.5 ° g/100mL Solv: chloroform (67-66-3) Wavlen: 589.3 nm	Conc: 1	(34) CAS
Optical Rotatory Power	-51 ° g/100mL Solv: chloroform (67-66-3) Wavlen: 589.3 nm	Conc: 0.90	(2) CAS
Optical Rotatory Power	remp: 25 °C -52.3 ° g/100mL Solv: chloroform (67-66-3) Wavlen: 589.3 nm	Conc: 0.1	(35) CAS
Optical Rotatory Power	I emp: 25 °C -60.8 ° g/100mL Solv: chloroform (67-66-3) Wavlen: 589.3 nm Temp: 25 °C	Conc: 1.23	(36) CAS

Steryl Esters (also called Sterol Esters)

Steryl esters are sterols that have reacted with fatty acids. The following structure is an example of a steryl ester. The sterol reacted is campesterol and the R group represent the hydrocarbon chain of a fatty acid residue.

<u>Squalene</u>

Formula: C30 H50

	Calculated		
Property	<u>Value</u>	Condition	<u>Note</u>
Bioconc. Factor	1.00E6	pH 1	(1) ACD
Bioconc. Factor	1.00E6	pH 4	(1) ACD
Bioconc. Factor	1.00E6	pH 7	(1) ACD
Bioconc. Factor	1.00E6	pH 8	(1) ACD
Bioconc. Factor	1.00E6	pH 10	(1) ACD
Boiling Point	429.3±0.0 °C	Press: 760 Torr	(1) ACD
Enthalpy of Vap.	65.81±0.8 kJ/mol		(1) ACD
Flash Point	254.1±29.9 °C		(1) ACD

H acceptors	0		(1) ACD	
H donors	0		(1) ACD	
Koc	1.00E7	pH 1	(1) ACD	
Кос	1.00E7	pH 4	(1) ACD	
Кос	1.00E7	pH 7	(1) ACD	
Кос	1.00E7	pH 8	(1) ACD	
Кос	1.00E7	pH 10	(1) ACD	
logD	13.09	рН 1	(1) ACD	
logD	13.09	рН 4	(1) ACD	
logD	13.09	рН 7	(1) ACD	
logD	13.09	pH 8	(1) ACD	
logD	13.09	pH 10	(1) ACD	
logP	13.089±0.415		(1) ACD	
Molar Solubility	Sparingly Soluble	pH 1	(1) ACD	
Molar Solubility	Sparingly Soluble	pH 4	(1) ACD	
Molar Solubility	Sparingly Soluble	pH 7	(1) ACD	
Molar Solubility	Sparingly Soluble	pH 8	(1) ACD	
Molar Solubility	Sparingly Soluble	pH 10	(1) ACD	
Molecular Weigh	nt	410.72		(1) ACD
Vapor Pressure	3.56E-7 Torr	Temp: 25 °C	(1) ACD	
	Experimental			
<u>Property</u>	<u>Value</u>	<u>Condition</u>	<u>Note</u>	
Boiling Point	266-270 °C	Press: 0.2 Torr	(2) CAS	
Boiling Point	248-252 °C	Press: 4 Torr	(3) CAS	
Boiling Point	230-245 °C		(4) CAS	
Boiling Point	220 °C	Press: 0.2 Torr	(5) CAS	
Boiling Point	213 °C	Press: 1 Torr	(6) CAS	
Boiling Point	212-214 °C	Press: 10-14	(7) CAS	
Boiling Point	162 °C	Press: 0.01 Torr	(8) CAS	
Boiling Point	160 °C	Press: 0.01101		
Bonnig i onit	100 0	Torr	(0) 040	
Boiling Point	145-150 °C	Press: 0.001	(10) CAS	
Bonnig i onit	140 100 0	Torr	(10) 040	
Boiling Point	115 °C	Press: 0.02 Torr	(8) CAS	
Density	0.9391 a/cm3	11033. 0.02 1011	(0) OAO	
Density	0.8076g/cm^3	Temp: 25 °C	(11) CAS	
Melting Point	-1 8-5 2 °C	10mp. 20 0	(17) CAS	
Ontical Rotatory	Power	+ 64 °	(12) 0A0	(13) CAS
		a/100ml		(13) 040
		Solv: chloroform		
		(67-66-3)		
		Wavlen: 580 3		
		nm		
		11111		

Appendix C – Financial Calculations

Goals	
Maximum Production	
- 275,000	kg/day SODD processed kg/yr SODD
100,375,000	processed
24,750	kg/day tocopherol mixture (90% recovery)
9,033,750	kg/yr tocopherol mixture (90% recovery)
90337500	kg/yr sterol esters
Start-up Production, 33%	Max Capacity
	- kg/day SODD processed
33123750	kg/yr SODD processed
8167.5	kg/day tocopherol mixture (90% recovery)
2981137.5	kg/yr tocopherol mixture (90% recovery)
29811375	kg/yr sterol esters

Variables														
SODD Purchase Price (\$/k Column Price	0 50).175 0000												
Chromatography Equipmer	nt Cost, R	<u>teseard</u>	ch Grade	<u>Gamma</u>										
for 100	\$500),000												
for 10	\$500),000												
for 1	\$500),000												
Product Sales Prices	Year 1	Ŋ	Year 2	Year 3	Year 4		Year 5	Year 6	Year 7	Year 8		Year 9	Ŷ	ear 10
Sterol Esters	\$	0.10	\$0.10	\$0.10		\$0.10	\$0.10	\$0.10	\$0.10		\$0.10		\$0.10	\$0.10
alpha-mixture		\$44	\$40	\$36		\$32	\$29	\$26	\$23		\$21		\$19	\$17
gamma-delta		\$350	\$368	\$386		\$405	\$425	\$382	\$364		\$346		\$328	\$312
research grade gamma	10	0000	90000	81000		72900	65610	59049	53144		47830		43047	38742

Equipment for				
Distillation				
<u>Unit</u>	<u>Size</u>	<u>Price</u>	<u>#</u>	<u>Total</u>
Vaporizer 1	6.6	\$14,639	1	\$14,639
Vaporizer 2	2.8	\$10,720	1	\$10,720
Reactor 1	9.8	\$41,669	28	\$1,166,732
Reactor 2	3.9	\$25,196	28	\$705,488
Tank(water)	57	\$28,002	1	\$28,002
Tank(C.r.)	5.6	\$30,698	1	\$30,698
Tank(MeOH)	18.7	\$18,331	1	\$18,331
Tank(Product)	30.3	\$22,522	1	\$22,522
Tank(waste)	160	\$35,305	1	\$35,305
Tank(mixing)	0.05	\$3,949	1	\$3,949
M.D. 1	400	\$300,000	2	\$600,000
M.D. 2	2000	\$900,000	4	\$3,600,000
Total				\$6,236,386
Molecular Distillers from> Meyers				
Vacuum				
All other from Peter-Timmerhaus				
estimation				
Equipment for Chromatography, G-	D Mixture			
Lipit	Size	Price	#	Total
Varicol Chromatography Unit	0126	\$500	,000 <u>#</u> 131	5 \$657,500,000
Distillation Tower		\$40	,000	\$40,000

\$657,540,000

Total Chromatography Unit price from Procon All other from Peter-Timmerhaus estimation

Equipment for Chromatography, Research Grade Gam	ma
Production Rate (kg/yr)	Price
1	\$500,000
10	\$500,000
100	\$500,000
1000	\$500,000

Materials for Distillation											
Material		Amount							Material Cost		
	Per Year		Per Day	-	Per	Hour	Unit		Unit Cost	Cost/day	Cost/year
Candia rugosa	\$	22,776,000	\$	62,400	\$	2,600	g		\$1.66 /g	\$103,584.00	\$37,808,160.00
Methanol	\$	20,476.50	\$	56.10	\$	2.34	gal		\$0.95 /gal	\$53.30	\$19,452.68
Methanol from CMR Candia rugosa www.sigma.com											

Materials for Chro	matography, Gam	ma-Delta			
Material	mL per kg Tocopherol Mixture	mL per kg Product	Unit Cost	Cost/kg Product	
Heptane for Dissolution	3000	4918	\$0.0003 \$/mL	\$1.57	
Heptane for Elution	87000	142623	\$0.0003 \$/mL	\$45.53	
Acetone for Elution	87000	142623	\$0.0010 \$/mL	\$143.64	
			Cost per kg product	\$190.75	

Materials for Chromatography, Pure Gamma											
Material	mL per kg Tocopherol Mixture	mL per kg Product		Unit Cost	Cost/kg Product						
Methanol for Dissolution	8000	32000		\$0.0003	\$8.02						
Acetone for Elution	20000	80000		\$0.0010	\$80.57						
Methanol for Elution	140000	560000		\$0.0003	\$140.37						
				Cost per kg product	\$228.96						

Labor for Distillation

Cost of Workers (\$/hr) Number of Workers/Shift # of Shifts/day Worker Cost per Day Worker Cost per Year \$33.67 4 3 \$3,232 \$1,179,797

Labor for Chromatography, Both Systems

Cost of Workers (\$/hr) Number of Workers/Shift # of Shifts/day Worker Cost per Day Worker Cost per Year \$33.67 30 3 \$24,242 \$8,848,476

Total Labor Cost for Plant				
Total # of Workers	102			
Total Cost	\$10,028,273 /year \$27,475 /day			

Utilities fo	r Distillat	ion						
		Amount	Units	Cost				
	Per year	Per Day	Per Hour			Per Year	Per Day	Per Hour
Water (Distilled)			25.206 m^3		0.85	187683.9	514.2024	21.4251
Steam			11644 /1000 k	g	5.95	606908.6	1662.763	69.2818
Electricity			580 kWh	(0.085	431868	1183.2	49.3

0.085

0.034

Utilities for Chromatography, G-D						
	Usage per kg Product	Units	Cost C	Cost per kg Product		
Electricity	0.8	‹Wh	0.085	0.068		
Utilities f	or Chromatograp	hy, R	esearch	Grade Delta		
	Usage per kg Product	Units	Cost C	Cost per kg Product		

0.4 kWh

Electricity

Cost Durchased Equipment			\$6.236
Purchaseu Equipment			ψ0,200,
Delivery		0.1	\$623,
I otal Cost of Equipment			\$6,860,
Equipment Installation		0.39	\$2,675,
Controls		0.26	\$1,783,
Piping	<u> </u>	0.31	\$2,126,
Electrical Systems		0.1	\$686,
Buildings		0.29	\$1,989,
Yard		0.12	\$823
Service Facilities		0.55	\$3,773
	Total direct cost		\$20,717
4 Caat			
Engineering		0.32	\$2,195
3 4 3			
Constuction		0.34	\$2,332
Legal expenses		0.04	\$274
Contractor's Fee		0.19	\$1,303
Contingency		0.37	\$2,538
	Total indirect Cost		\$8,643
	Fixed Capital Investment		\$29,360
	Working Capital	0.75	\$5,145
	Working Capital	0.75	\$5,145

Total Capital Investment for Chromatography

Based on Peters-Timmerhaus

Purchased Equipment		\$657,540,000
Delivery	0.1	\$65,754,000
Total Cost of Equipment		\$723,294,000
Equipment Installation	0.39	\$282,084,660
Controls	0.26	\$188,056,440
Piping	0.31	\$224,221,140
Electrical Systems	0.1	\$72,329,400
Buildings	0.29	\$209,755,260
Yard	0.12	\$86,795,280
Service Facilities	0.55	\$397,811,700
Total direct cost		\$2,184,347,880
<u>ost</u>	0.00	\$004 454 000
Engineering	0.32	\$231,454,080
Constuction	0.34	\$245,919,960
Legal expenses	0.04	\$28,931,760
Contractor's Fee	0.19	\$137,425,860
Contingency	0.37	\$267,618,780
Total indirect Co	st	\$911,350,440
Fixed Capital Inv	vestment	\$3,095,698,320
Working Capital	0.75	\$542,470,500
ital Invactment		\$3 638 168 820

ima, ikg/yr	
	\$500,000
0.1	\$50,000 \$550,000
0.39	\$214,500
0.26	\$143,000
0.31	\$170,500
0.1	\$55,000
0.29	\$159,500
0.12	\$66,000
0.55	\$302,500
	\$1,661,000
0.32	\$176,000
0.34	\$187,000
0.04	\$22,000
0.19	\$104,500
0.37	\$203,500
	\$693,000
nent	\$2,354,000
0.75	\$412,500
	\$2,766,500
	 0.1 0.39 0.26 0.31 0.1 0.29 0.12 0.55 0.32 0.34 0.34 0.04 0.19 0.37

CI, Research Grade Gar ed on Peters-Timmerhaus	nma, 10kg/y	r
rect Cost		
Purchased Equipment		\$500,000
Delivery Total Cost of Equipment	0.1	\$50,000 \$550,000
Equipment Installation	0.39	\$214,500
Controls	0.26	\$143,000
Piping	0.31	\$170,500
Electrical Systems	0.1	\$55,000
Buildings	0.29	\$159,500
Yard	0.12	\$66,000
Service Facilities	0.55	\$302,500
Total direct cost		\$1,661,000
lirect Cost		
Engineering	0.32	\$176,000
Constuction	0.34	\$187,000
Legal expenses	0.04	\$22,000
Contractor's Fee	0.19	\$104,500
Contingency	0.37	\$203,500
Total indirect Cost		\$693,000
Fixed Capital Invest	ment	\$2,354,000
Working Capital	0.75	\$412,500
tal Capital Investment		\$2,766,500
ters-Timmerhaus	iiiiia, iooky/	yı
-------------------------------------	--------------------------	-----------------------
ost		
Purchased Equipment		\$500,000
Delivery Total Cost of Equipment	0.1	\$50,000 \$550,000
Equipment Installation	0.39	\$214,500
Controls	0.26	\$143,000
Piping	0.31	\$170,500
Electrical Systems	0.1	\$55,000
Buildings	0.29	\$159,500
Yard	0.12	\$66,000
Service Facilities	0.55	\$302,500
Total direct cost	Total direct cost	
Cost		
Engineering	0.32	\$176,000
Constuction	0.34	\$187,000
Legal expenses	0.04	\$22,000
Contractor's Fee	0.19	\$104,500
Contingency	0.37	\$203,500
Total indirect Cost		\$693,000
Fixed Capital Inves	Fixed Capital Investment	
Working Capital	0.75	\$412,500
		¢0 700 500

ers-Hmmernaus		
ost		
Purchased Equipment		\$500,000
Delivery Total Cost of Equipment	0.1	\$50,000 \$550,000
Equipment Installation	0.39	\$214,500
Controls	0.26	\$143,000
Piping	0.31	\$170,500
Electrical Systems	0.1	\$55,000
Buildings	0.29	\$159,500
Yard	0.12	\$66,000
Service Facilities	0.55	\$302,500
Total direct cost	Total direct cost	
Cost		
Engineering	0.32	\$176,000
Constuction	0.34	\$187,000
Legal expenses	0.04	\$22,000
Contractor's Fee	0.19	\$104,500
Contingency	0.37	\$203,500
Total indirect Co	ost	\$693,000
Fixed Capital In	Fixed Capital Investment	
Working Capital	0.75	\$412,500
		\$2 766 500

Return on Investment (Dollars per Dollar Invested)					
Year	Design 1	Design 2	Design 3	Design 4	Design 5
1	\$0.13	\$0.13	\$0.13	\$0.15	\$0.13
2	\$0.15	\$0.15	\$0.15	\$0.17	\$0.15
3	\$0.17	\$0.17	\$0.17	\$0.19	\$0.17
4	\$0.19	\$0.19	\$0.19	\$0.21	\$0.19
5	\$0.21	\$0.21	\$0.21	\$0.23	\$0.21
6	\$0.16	\$0.16	\$0.16	\$0.17	\$0.16
7	\$0.13	\$0.13	\$0.13	\$0.15	\$0.13
8	\$0.11	\$0.11	\$0.11	\$0.12	\$0.11
9	\$0.09	\$0.09	\$0.09	\$0.10	\$0.09
10	\$0.06	\$0.06	\$0.07	\$0.07	\$0.06

Pure Gamma Production	NPW (Billions of Dollars)		
kg/yr	Minimum	Average	Maximum
0	-0.74	0.93	3.53
1	-0.75	0.92	3.53
10	-0.74	0.93	3.53
100	-0.72	0.95	3.56
1000	-0.46	1.22	3.83

Pure Gamma Production	NPW (Billions of Dollars)			Maximum Regret
kg/yr	Minimum	Average	Maximum	(\$)
0	0.28	0.29	0.30	0.30
1	0.29	0.30	0.30	0.30
10	0.28	0.29	0.30	0.30
100	0.26	0.27	0.27	0.27
1000	0.00	0.00	0.00	0.00

References

- 1. FDA/Website Management Staff, tg; www.fda.gov; 2003
- Hensley, K.; Benaksas, E.; Bolli, R.; Comp, P.; Grammas, P.; Hamdeydari, L.; Mou, S.; Pye, Q.; Stoddard, M.; Wallis, G.; Williamson, K.; West, M.; Wechter, W.; Floyd, R. New Perspectives on Vitamin E: Gamma-Tocopherol and Carboxyethyhydroxychroman Metabolites in Biology and Medicine. *Free Radical Biology & Medicine*. 36:1-15; 2004.
- 3. Watanabe, Y.; Nagao, T.; Hirota, Y.; Kitano, M.; Shimada, Y. Purification of Tocopherols and Phytosterols by a Two-Step *in situ* Enzymatic Reaction. *Journal of the American Oil Chemists.* **81**: 339-345; 2004.
- Shimada, Y.; Nakai, S.; Suenga, M.; Sugihara, A.; Kitano, M.; Tominaga, Y. Facile Purification of Tocopherols from Soybean Oil Deodorizer Distillate in High Yield Using Lipase. *Journal of the American Oil Chemists*. 77: 1009-10013; 2000.
- 5. Dan Paradis. Personal Communication (telephone conversation).
- 6. Cargill Health & Food Technologies. (2004). *Corowise Plant Sterol Esters* [Brochure]. Minneapolis, MN.
- 7. Cargill Health & Food Technologies. (2004). *Corowise Plant Sterols* [Brochure]. Minneapolis, MN.
- 8. Cargill Health & Food Technologies. (2004). *Corowise Instant DV-C100* [Brochure]. Minneapolis, MN.
- 9. www.nutritionbusiness.com
- 10. Scifinder Scholar, 2004 ed. American Chemical Society.
- 11. Theodore R. Olive. Molecular Distillation: A New Path to Separation of Chemicals. *Chemical & Metallurgical Engineering*. Aug. 1944:100-104
- 12. www.nutraingredients.com
- 13. Shizumasa, Kijima, Toyota, H., Tokyo, and Tetsuya N., etc., *Method of Isolating* and *Refining Tocopherol Homologues*. US Patent: 3,402,182
- 14. US Patent 6,867,308
- 15. Harrison Roger, Todd, P. Rudge, S. Petrides, D. <u>Bioseparations Science and</u> <u>Engineering</u>. Oxford University Press. 2003.

- 16. Shuler L. Michael, Kargi F. <u>Bioprocessing Engineering Basic Concepts 2nd</u> <u>Edition</u>. Prentice Hall. 2002.
- 17. http://dalwoo.com/chitosan
- 18. http://www.chemindustry.com/