Natural Gas Industry In Peru

Laura Causey
Michael Eatmon
Sara Habib
Kien Nguyen
Sheau Te

Camisea Natural Gas Reservoir

- The Camisea natural gas reserve located in Peru
- Discovered in 1980 by Shell Oil
- Approximately 11 trillion ft³, estimated 600 million bbl reserve

Project Description

Objective: Present business plan based on varying initial investments

GOALS:

- Research Peruvian market
- Research petrochemical products produced using natural gas
- Find imported petrochemical products
- Use business model to compare different options

Project Scope

- Investigate entire natural gas market
- Eliminate processes
- Determine fixed capital investment and operating costs for processes
- Product prices
- Product demands
- Deterministic Model
- Stochastic Model

Camisea Pipeline Project

- Route: Camisea
 Reservoir to Pisco
- Current rate: 400 million cubic feet per day
- Two pipelines
 - NGL (natural gas liquids)
 - Natural Gas

Pipeline Economics

- Length of pipeline155 miles ~ 250km
- Total cost: \$2.7
 billion US dollars
- Cost per mile \$17.4 million

Deterministic Model

- Optimization software
 - GAMS
- Function
 - Calculates net present worth
 - Selects if and when a process is to be constructed
 - Selects process capacities
 - Regulates expansions

Deterministic Model

- Data required
 - Pipe cost from Camisea to Pisco
 - Fixed capital investment
 - Operating cost
 - Chemical prices
 - Demand

Eliminated Processes

- Acetic Acid
- Formaldehyde
- Urea
- Phenol
- Styrene

Acetic Acid/Formaldehyde

- Acetic Acid
 - Products not in high demand for market
- Formaldehyde
 - Market in region dominated by Brazil
 - Demand satisfied

^{*}Vines, Tonya. <u>Industry Week.</u> *Borden Responds to Consumer Trends;* Apr 2005; pg. 66.

^{*}Chemical Week; June 30-Jul 7, 2004. pg 40

Urea Process

- Decreasing demand for product
- More economical products can be made by natural gas

*Van Savage, Eleanor. <u>Chemical Market Reporter.</u> *Urea Prices on Depleting Inventories and Raising Natural Gas Prices.* July 15, 2002.

Phenol/Styrene

- Phenol
 - Increasing prices, low margins
 - Market is saturated
- Styrene
 - Market for phenol currently satisfied by local companies

^{*}Viswanathan, Prema. Chemical News; Feb 28-Mar 6, 2005. pg. 24

Product Evaluation

- Not selling individual gases
 - Ethane
 - Pentane

 These products used in other processes to yield higher profit products

Different Investment Options

- Need to determine
 - What processes to build
 - Capacities
 - Expansions
 - Reinvestment

Methods To Calculate Fixed Capital Investment

- Equipment cost breakdown
 - Process flow diagrams
 - Pressure drop
 - Change in temperature
 - Duties
 - Residence time
 - Conversion
 - Heat transfer coefficients
 - Direct Costs/Indirect Costs
- Research provided by other companies

Ethylene Synthesis

Initiation

$$C_nH_{2n+2} \rightarrow C_mH_{2m+1} + C_{(n-m)}H_{2(n-m)+1}$$

Propagation

$$C_nH_{2n+2}+C_mH_{2m+1}. \rightarrow C_nH_{2n+1}.+C_mH_{2m+2}$$

 $C_nH_{2n+1}. \rightarrow C_mH_{2m}+C_{(n-m)}H_{2(n-m)+1}.$

Termination

$$\begin{split} &C_n H_{2n+1}. + C_m H_{2m+1}. \longrightarrow C_n H_{2n} + C_m H_{2m+2} \\ &C_n H_{2n+1}. + C_m H_{2m+1}. \longrightarrow C_n H_{2n+2} + C_m H_{2m} \\ &C_n H_{2n+1}. + C_m H_{2m+1}. \longrightarrow C_{n+m} H_{2(n+m)+2} \end{split}$$

Ethylene Synthesis Technology

ABB Lummus Global SRT Cracking Technology

- 1.5 MMTA
- Residence time of <1s
- Good environmental performance

Fixed Capital Investment vs. Capacity of Ethylene Synthesis

Operating Cost vs. Capacity

Low Density Polyethylene

- Overall polymerization reaction
 n(CH₂=CH₂) →(-CH₂-CH₂-)_n
- Peroxides provide the source of free radicals
- Catalyst is a Ziegler-Natta

ExxonMobil High-Pressure Process for Low Density Polyethylene

Low Density Polyethylene Technologies

Polimeri Europa High-Pressure Process

- Benefits
 - Ziegler-Natta catalyst allows for flexibility of products
 - 400,000 MTA
 - Conversions up to 30%

Low Density Polyethylene Technologies

ExxonMobil High-Pressure Process

- Benefits
 - Predominant polyethylene process
 - 400,000 MTA
 - Control of product properties and quality
 - Conversion up to 40%

Phillips Polypropylene Process

Ziegler-Natta catalyst

Overall Reaction

Ti-Et+n(CH₃CH₂=CH) \rightarrow Ti(CH₃CH₂CH)_n-Et

Phillips Polypropylene Process Description

Mixture fed to pipe loop reactor

- High-purity propylene
- Ethylene comonomer
- Catalyst
- Modifiers

Separator

- Catalyst residues
- Soluble polymer slurry

Flash drum

Soluble polymer slurry

Dryer

Soluble polymer

Extruder

Polymer pelletized

Polypropylene Technologies

BASF Novolen

- Benefits
 - Excellent homogeneity
 - Flexible
 - Emission result only from leaks
 - Low utility costs

Phillips

- Benefits
 - Simplest, most efficient process
 - Flexible
 - Operate on a wide variety of catalysts
 - Low waste

High Density Polyethylene

- Manufactured using 3 process technologies at low pressure
 - Slurry
 - Solution
 - Gas Phase
- Ziegler-Natta catalyst or chromium oxide
- Highest crystallinity

*Phillips High Density Polyethylene Process

High Density Polyethylene Technologies

- Hoechst
 - Control of molecular weight
 - Optimal steady state behavior
 - Low investment costs
- Phillips
 - Predominant technology
 - Simple
 - Low investment costs

Linear-Low Density Polyethylene

- Processes
 - Gas Phase
 - Solution
- Catalysts
 - Ziegler (titanium)
 - Phillips (chromium)

- Fixed Capital Investment
 - Tanker cost
- Operating costs
 - Crew cost
 - Lubes & Stores
 - Maintenance & Repair
 - Insurance
 - Administration
 - Fuel

Ammonia Synthesis

Ammonia Synthesis

- Five technologies
 - ICI process
 - Haldor Topsoe process
 - Uhde Ammonia process
 - Kellogg Brown & Roots Advanced Ammonia plus process (KAAPplusTM)

Ammonia Synthesis

$KAAP plus^{TM}$:

- Lower capital cost
- Improved reliability
- Reduced operating cost
- Lower energy consumption

Fertilizer - Ammonium Nitrate

Ammonium Nitrate from Ammonia

- Nitric acid formation:
 - NH_3 (g) + $2O_2$ (g) \leftrightarrow HNO_3 (aq) + H_2O (I)
- Ammonium nitrate fertilizer:
 - HNO_3 (aq) + NH_3 (g) $\leftrightarrow NH_4NO_3$ (aq)

Nitric Acid

Nitric Acid

Uhde Nitric acid

- High pressure
- Medium pressure
- Dual pressure

Dual pressure

- Lower operating pressure
- Lower electricity cost
- Lower catalyst lost (platinum)

Ammonium Nitrate

8 ADDITIVE MAY HE ADDED HEFURE, DURING, OR AFTER CONCENTRATION 5 SCREENING MAY HE PERFORMED BEFORE OR AFTER SOLIDS FINISHING

Vinyl Chloride

Vinnolit vinyl chloride process

$$C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$$

$$C_2H_4 + 2HCl + \frac{1}{2}O_2 \rightarrow C_2H_4Cl_2 + H_2O$$

$$2C_2H_4Cl_2 \rightarrow 2C_2H_3Cl + 2HCl$$

$$2C_2H_4 + Cl_2 + \frac{1}{2}O_2 \rightarrow 2C_2H_3Cl + H_2O(overall)$$

Vinyl Chloride

Polyvinyl Chloride

$$nCH_2 = CHCl \rightarrow [-CH_2 - CHCl -]_n$$

Polyvinyl Chloride (PVC)

Suspension-PVC (S-PVC)

- pipes
- constructions
- bottles
- cable
- bags

Emulsion/Paste-PVC (E/P-PVC)

- flooring
- coated fabrics
- wall coverings

Fischer Tropsch

- Converts natural gas into long chain hydrocarbons and oxygenates
- Alternative Production Route
 - Transportation fuels
 - Petrochemical feedstock
- Large capital investment
- Increased interest
 - High crude oil price

Process Steps

 Synthesis gas manufacturing: produces a mixture of CO and H₂ from natural gas

$$CH_4 + H_2O \rightarrow CO + 3H_2$$
 (steam reforming)

 Fischer-Tropsch synthesis: converts syngas into a large range of linear hydrocarbons (synthetic crude oil)

$$nCO + 2nH_2 \rightarrow -(CH_2)_n - + nH_2O$$

Product upgrading: classic crude oil refinery technique

Sasol Technology Fisher Tropsch Process

Technologies

Sasol Technology

- Uses coal-derived gas as feedstock
- Autothermal reformer
- Cobalt catalyst FT slurry reactor

Advanced Gas Conversion (AGC-21)

- Circulating fluidized bed reactor for syngas
- Slurry cobalt catalyst FT reactor
- Developed by ExxonMobil

Shell Middle Distillate Synthesis (SMDS)

- Non-catalytic combined reforming process for syngas generation
- Fixed-bed Arge-type FT reactor

Methanol Production

1. Feed Gas Preparation

produce mixture of CH₄ and steam from Natural Gas

2. Synthesis Gas Generation

Steam reforming
$$CH_4 + H_2O = CO + 3H_2$$

Shift reaction $CO + H_2O = CO_2 + H_2$

3. Methanol Synthesis

$$CO + 2H_2 = CH_3OH$$

 $CO_2 + 3H_2 = CH_3OH + H_2O$

Flow diagram of a Leading Concept Methanol Plant

Technologies

Low Pressure Methanol (LPM)

- LPM uses low pressure reformer
- Produces 60% of the methanol in the world

Gas Heated Reformer (GHR)

- Enables manufacture of greater volumes of methanol
- Reduces the cost of production

Leading Concept Methanol (LCM)

- LCM brings together GHR with the LPM
- More compact
- More economical

Ethylene Glycol

- Most ethylene glycol plants use hydration of ethylene oxide
- Consisted of two processes
 - Production of ethylene oxide from ethylene
 CH₂=CH₂ + ½ O₂ → (CH₂)₂O
 - Production of ethylene glycol from ethylene oxide

$$(CH_2)_2O + H_2O \rightarrow CH_2$$
OH
OH

Halcon SD Group Ethylene Oxide Process

Ethylene Glycol Process

Schematic flow diagram of Halcon SD ethylene glycol plant

Planning Model Input

Process	Fixed Capital	Operating Cost
	Investment	
Ethylene Synthesis	FCI = 2.22Q + 29.72	OC = 6.02Q + 2.18
Low Density Polyethylene	FCI = 4.46Q + 9.88	OC = 1.30Q + 2.49
High Density Polyethylene	FCI = 9.76Q + 12.83	OC = 2.10Q + 2.18
Linear-Low Density Polyethylene	FCI = 9.76Q + 12.83	OC = 21.87Q + 2.18
Polypropylene	FCI = 12.92Q + 26.30	OC = 1.74Q + 2.18
Vinyl Chloride	FCI = 0.58Q + 6.70	OC = 2.92Q + 5.10
Polyvinyl Chloride	FCI = 1.26Q + 16.26	OC = 1.85Q + 0.16
Ammonia Synthesis	FCI = 28.45Q + 30.59	OC = 6.97Q + 6.75
Fertilizer	FCI = 1.66Q + 10.58	OC = 2.04Q + 11.86
Methanol	FCI = 6.46Q + 16.11	OC = 1.68Q + 22.83
Ethylene Glycol	FCI = 2.05Q + 9.38	OC = 2.16Q + 39.22
Fischer Tropsch	FCI = 6.23Q + 156.31	OC = 1.33Q + 50.23
Liquid Natural Gas	FCI = 4.47Q + 620.69	OC = 0.0027Q + 35.4

Deterministic Parameters

- Natural Gas Flow Rate
 - Maximum: 10,000,000 ft³/day
 - Minimum: 50,000 ft³/day
- Maximum Initial Investment \$7 Billion
- Taxes 10%
- Interest Rate 5%
- Reinvestment 20%

Initial Model Design Results

- NPW \$40.5 Billion
- FCI \$6.50 Billion
- Expansion Costs \$2.56 Billion
- Natural gas flow rate 3.5 Million ft³/day

Reinvestment

- Reinvestment initially set to 20%
 - Inefficient
- Reinvestment allowed to vary
 - Maximum Value: 100%
 - Minimum Value: 0%
 - Increased NPW \$12 Billion

Deterministic Model Results

Maximum Initial Investment (Billions)	NPW (Billions)	Actual Initial Investment (Millions)	Reinvestment (Millions)	Capital (Millions)	ROI
\$6	\$50.9	\$6,000.0	\$2,838.83	\$8,838.8	57.6%
\$7	\$52.5	\$6,504.7	\$2,558.40	\$9,063.1	57.9%
\$8	\$53.3	\$6,504.7	\$2,558.40	\$9,063.1	58.8%
\$9	\$55.0	\$8,963.4	\$0.00	\$8,963.4	61.4%

Number of Plants Built 1st Year

NPW Related to Initial Investment

Sensitivity Analysis

- Vary product prices
 - Determine the effect of price on process flow rate
 - Range of prices that does not affect overall results

Cost Analysis

	Initial Price (\$/kg)	Profitable Price (\$/kg)	NPW (Billions)
Low Density Polyethylene	\$1.65	\$3.50	\$54.1
High Density Polyethylene	\$1.59	\$3.00	\$54.2

Cost Analysis

- Polyvinyl Chloride, Initial Price \$1.26/kg
 - New Price \$1.10/kg
 - Built 1st year, not 2nd
 - Smaller process flow rate
 - New Price \$1.00/kg
 - Polyvinyl Chloride not sold

PVC Price	NPW (Billions)
\$1.26/kg	\$52.5
\$1.10/kg	\$48.7
\$1.00/kg	\$45.8

Cost Analysis

- Methanol, Initial Price \$0.316/kg
 - New Price \$0.27/kg
 - NPW \$48.9 Billion
 - New Price \$0.10/kg
 - Process still built
 - NPW \$38.4 Billion

Methanol Price	NPW (Billons)
\$0.316/kg	\$52.5
\$0.25/kg	\$48.9
\$0.10/kg	\$38.4

Stochastic Model

- Stochastic model
 - Uncertainties
 - Price, demand
 - First Stage Variables
 - "Here and Now Decision"
 - Plants built in first five years
 - Second Stage Variables
 - "Wait and See Decision"
 - Capacities, feed flow rate, plants built after fifth years

Stochastic Model

- What is scenarios?
 - A set of prices and demands of each product in each year
- How to generate scenarios?
 - Sampling distribution probability

