Hydrogen Generation

Analyzing the viability of Hydrogen as a mobile energy carrier

TRACE IS

5	Cycles and Previous Studies
6	Thermodynamic Analysis
7	Molecular Discovery
8	Plant Design Analysis
9	Conclusions

Why Are We Interested in Hydrogen?

- It is abundant and can be produced locally
- No pollution
- Hydrogen is a clean energy carrier
- Fossil fuels are limited
- Renewable resource

Hydrogen Technologies

- Steam Reforming
- Electrolysis
- Thermochemical

Hydrogen Generation

- Steam reforming of methane accounts for the 50 million tons of hydrogen used world-wide
- Electrolysis is a mature technology and is used primarily for the production of high purity oxygen and hydrogen
- Hydrogen produced by high temperature thermochemical processes has not been demonstrated on a commercial scale
 - Promises high efficiency production in the future

Relative Cost

- H₂ produced by methane reforming -\$0.80/kg
- H₂ produced by electrolysis -\$3.00/kg @ \$0.06/kWh
- H_2 expectations for nuclear & thermo chemical \$1.30/kg

Advantages of Hydrogen

- Hydrogen can be totally non-polluting (water is the exhaust).
- Hydrogen can be economically competitive with gasoline or diesel.
- Hydrogen is just as safe as gasoline, diesel, or natural gas.
 - The self-ignition temperature of hydrogen is 550 degrees Celsius.
 - Gasoline varies from 228-501 degrees Celsius
- Hydrogen can help prevent the depletion of fossil fuel reserves.
- Hydrogen can be produced in any country.

Disadvantages of Hydrogen

- Hydrogen production is energy intensive
- Low density, resulting in:
 - large volumes
 - low temperatures
 - high pressures
- Complex systems required for storage

Market Environment-Global Purchased Hydrogen

Market Environment-Our Target

- Hydrogen Fuel Cell Cars
 - Why HFC Cars?
 - No byproducts concerning the environment
 - Gas equivalent value of hydrogen is \$4.75/kg
- Why not the current users of hydrogen?
 - Not competitive with steam reforming
 - Steam reforming will not work for this market
 - More profitable to sell the CNG directly
 - CNG has environmental issues (CO₂, NO_x, Inefficiency of internal combustion engine)

Market Environment-Hydrogen Prices

- Historical (1997 2002) Steam Reformed Methane
 - High, \$ 2.60 per 100 SCF, compressed gas, tube trailer
 - Low, \$1.25, same basis.
- Current: \$1.70 to \$2.60 same basis;
 - \$1.15 to \$1.80 per 100 SCF, cryogenic liquid, tank truck
 - \$0.18 to \$0.80 compressed gas, pipeline
- Hydrogen market prices vary depending on the form of delivery, consumed volume, and location.

5	Cycles and Previous Studies
6	Thermodynamic Analysis
7	Molecular Discovery
8	Plant Design Analysis
9	Conclusions

Sources of Energy to Produce Hydrogen

Sources of Energy to Produce Hydrogen-Solar

Solar

- Solar input is interrupted by night and cloud cover
- Solar electric generation inevitably has a low capacity factor, typically less than 15%
- Expensive to make
- Materials are environmental concern: crystalline silicon and gallium arsenide

Sources of Energy to Produce Hydrogen-Solar

Solar

- To produce enough energy as a 1,000-megawatt nuclear reactor, panels would have to occupy 127 square miles of land
 - Solar Power from Sun is 1 kW/m²
- There is a low intensity of incoming radiation and converting this to electricity
 - Inefficient (12 16%)

Sources of Energy to Produce Hydrogen-Wind

Wind

- Average wind speed of 14 mph is needed to convert wind energy into electricity economically
- Average wind speed in the United States is 10 mph
- Higher initial investment than fossil-fueled generators
- 80% of the cost is the machinery, with the balance being the site preparation and installation

Sources of Energy to Produce Hydrogen-Wind

Wind

- Irregular and it does not always blow when electricity is needed
- Based on the average wind speed
 - 50,000 wind turbines
 - 300 square mile area
 - For the same amount of electricity of one 1000 MW nuclear power plant produces

Sources of Energy to Produce Hydrogen-Nuclear

Nuclear

- 1,000 MWe power station consumes about 2.3 million tonnes of black coal each year
- Nuclear: 25 tonnes of uranium
- No CO₂ emissions

Sources of Energy to Produce Hydrogen-Comparison of Energy

One kilogram (kg) of firewood can generate 1 kilowatt-hour (kW \cdot h) of electricity.

 1 kg coal:
 3 kW·h

 1 kg oil:
 4 kW·h

 1 kg uranium:
 50,000 kW·h

Consequently, a 1000 MWe plant requires the following number of tonnes (t) of fuel annually:

2,600,000 t coal: 2 000 000 t oil: 25 t uranium: 2000 train cars (1300 t each) 10 supertankers Reactor Core (10 cubic metres)

Sources of Energy to Produce Hydrogen-Comparison of Land Use

1000 MW system with values determined by local requirements and climate conditions (solar and wind availability factors ranging from 20 to 40%):

Fossil and Nuclear sites:

Solar thermal or photovoltaic (PV) parks:

Wind fields:

Biomass plantations:

1-4 km²

20-50 km² (a small city)

50-150 km²

4000-6000 km² (a province)

5	Cycles and Previous Studies
6	Thermodynamic Analysis
7	Molecular Discovery
8	Plant Design Analysis
9	Conclusions

Power Sources

- Nuclear power costs about the same as coal, so it's not expensive to make.
- Does not produce smoke or carbon dioxide, so it does not contribute to the greenhouse effect.
- Produces huge amounts of energy from small amounts of fuel.
- Produces small amounts of containable waste.

Power Sources: GT-MHR

- Reactor power, MWt 600
- Core inlet/outlet temperatures, 491/850 °C
- High thermal efficiency
- Low environmental impact
- Competitive electricity generation costs.

5	Cycles and Previous Studies
6	Thermodynamic Analysis
7	Molecular Discovery
8	Plant Design Analysis
9	Conclusions

Decision of Location

- •Exelon, Entergy, and Dominion Resources
 - •Plans to build new nuclear power plants using a GT-MHR
 - Exelon Clinton, Illinois
 - Entergy Port Gibson, Mississippi
 - Dominion North Anna Power Station Sixty miles NW of Richmond, VA

 $HydroN\bar{u}c,\,Inc.$

Decision of Location

chemical, biological and materials engineering university of oklahoma

Transportation

- Gaseous hydrogen can't be treated the same as natural gas
- Important hydrogen-related concerns for pipelines:
 - Fatigue cracking
 - Fracture behavior
 - Performance of welds
 - High pressure hydrogen
 - Gas purity

Transportation-Tube Trailers

- Compressed gas tube trailers
 - Fill at plant, swap for empty at fueling station
 - Holds 400 kg of H₂ at 7000 psi
 - Pumping is required to transfer from trailer to tank (~3.1 kWh/kg)

Transportation

- Compressed gas tube trailers
 - Fill at plant, swap for empty at fueling station
 - Holds 400 kg of H₂ at 7000 psi
 - Pumping is required to transfer from trailer to tank (~3.1 kWh/kg)
- Cryogenic liquid trailers
 - Holds 4000 kg of H₂
 - Liquefaction energy ~13.75 kWh/kg
 - Boil-off occurs

Transportation-Pipelines

- Environmental impacts
- Compatibility with land uses
 - Availability of rights of way and permitting
- Cost
- Maintenance and operation of the completed pipeline

HydroNūc, Inc.

30 9/23/2005

Transportation-Trucks/Pipeline

Central production is more efficient. Getting the hydrogen to market is a challenge. Assuming production rate of 500 tonnes/day.

1	Introduction
2	Sources of Energy
3	Power Source
4	Decision of Location-Nuclear

Water splitting cycle

• Splits water into constitute elements

$$2H_2O \rightarrow 2H_2 + O_2$$

- The reaction is not thermodynamically favorable, with Gibbs Energy: 237.1 kJ/mol
- A set of reactions can achieve the overall result, with favorable thermodynamics.

Literature Proposed Cycles

The following 2 examples were included in our investigation based on cycle efficiency

Hallett Air Products

Reaction $CI_2 + H_2O \rightarrow 2HCI + \frac{1}{2}O_2$ Temperature 800 °C

25 °C

 $2\text{HCI} \rightarrow \text{CI}_2 + \text{H}_2$ (electrolysis)

Literature Proposed Cycles

Sulfur - Iodine

Reaction H ₂ SO ₄ \rightarrow SO ₂ + H ₂ O + $\frac{1}{2}O_2$	Temperature 850 ^o C
$2HI \rightarrow I_2 + H_2$	450 °C
$I_2 + SO_2 + 2H_2O \rightarrow H_2SO_4 + 2HI$	120 °C

This cycle is being seriously considered by the DOE, a pilot plant is being planned

chemical, biological & moterials chemical, biological and materials engineering university of oklahoma

1	Introduction
2	Sources of Energy
3	Power Source
4	Decision of Location-Nuclear

5	Cycles and Previous Studies
6	Thermodynamic Analysis
7	Molecular Discovery
8	Plant Design Analysis
9	Conclusions

Thermodynamic Analysis

- The heat cascade analysis allows for a preliminary method of selection of a given cycle
- The final efficiency of a cycle will be obtained after a detailed analysis has been performed

Heat Cascade Efficiency

• The cycle heat cascade efficiency is defined as

$$\varepsilon = \frac{\Delta H_{RXN}}{HU}$$

• The hot utility, HU, was found using a heat cascade analysis using an approach temperature of 10 degree Celsius

Temperature Interval Diagram plus Heat of Reaction for Sulfur-Iodine

		Hot Streams		Reaction			Cold St	treams	S	Rea	ction				
Stream #	1	2	3	Rxn3		4	5	5	6	Rxn 1	Rxn2		Total Heat	Cummulat	ive
	SO ₂ H ₂ O	SO ₂ & I ₂ H ₂ O & H ₂	H ₂	kJ/mol		H₂C) 2H	HI SO4	H₂SO4	kJ/mol	kJ/mol				
Component	½O2	1⁄2O2	7202				1120	-~4					Σ n _i Δ H _i		HOT Utility
Temp. °C												Temp. °C			
860										4		850			531
850					A				1	-185		840	-186	-186	345
460					D							450	20	208	275
450	-				C		4				-12	430 440	-20	-200	324
130					D							120	-324	-531	0
120				246	E	1						110	2	-529	2
35		·		-	F							25	243	-286	245
25			+		G							15	0.43	-286	245

Thermodynamic Results

Cycle	Name	Temperature	Reaction	ΔG	K	Efficiency
	1 US -Chlorine	850	$2\text{Cl2}(g) + 2\text{H2O}(g) \rightarrow 4\text{HCl}(g) + \text{O2}(g)$	-17.43	6.466	
		200	$2CuCl + 2HCl \rightarrow 2CuCl2 + H2(g)$	-5.79	2.462	99.9%
		500	$2CuCl2 \rightarrow 2CuCl + Cl2(g)$	143.68	1.37534E-16	
	2 Hallett Air Products	800	$2\text{Cl2}(g) + 2\text{H2O}(g) \rightarrow 4\text{HCl}(g) + \text{O2}(g)$	-14.02	4.811	00 7%
		25	$2\text{HCl} \rightarrow \text{Cl2}(g) + \text{H2}(g)$	162.32	3.64892E-29	99.1 /0
	3 Westinghouse	850	$2H2SO4(g) \rightarrow 2SO2(g) + 2H2O(g) + O2(g)$	-68.36	1510	01 70/
		77	$SO2 (g) + 2H2O(a) \rightarrow H2SO4(a) + H2(g)$	44.23	2.52718E-07	01.770
	4 Ispra Mark 4	850	$2\text{Cl2}(g) + 2\text{H2O}(g) \rightarrow 4\text{HCl}(g) + \text{O2}(g)$	-17.43	6.466	
		100	$2FeCl2 + 2HCl + S \rightarrow 2FeCl3 + H2S$	189.21	6.178E-10	77 00/
		420	$2FeCl3 \rightarrow Cl2(g) + 2FeCl2$	15.94	0.06296	11.9%
		800	$H2S \rightarrow S + H2(g)$	105.34	1.796E-15	
	5 Gaz de France	725	$2K + 2KOH \rightarrow 2K2O + H2(g)$	159.47	2.600E-08	
		825	$2K2O \rightarrow 2K + K2O2$	141.86	3.770E-08	56.2%
		125	$2K2O2 + 2H2O \rightarrow 4KOH + O2(g)$	-217.89	3.84112E+28	
	6 Julich Center EOS	800	$2Fe3O4 + 6FeSO4 \rightarrow 6Fe2O3 + 6SO2 + O2(g)$	-91.00	26879	
		700	$3FeO + H2O \rightarrow Fe3O4 + H2(g)$	19.29	0.09222	54.1%
		200	$Fe2O3 + SO2 \rightarrow FeO + FeSO4$	-18.04	98.03	
	7 Sulfur-Iodine	850	$2H2SO4(g) \rightarrow 2SO2(g) + 2H2O(g) + O2(g)$	-68.36	1510	
		450	$2\text{HI} \rightarrow \text{I2}(g) + \text{H2}(g)$	23.59	0.019770129	53.8%
		120	$I2 + SO2(a) + 2H2O \rightarrow 2HI(a) + H2SO4(a)$	-36.79	77134	
	8 Ispra Mark 7B	1000	$2Fe2O3 + 6Cl2(g) \rightarrow 4FeCl3 + 3O2(g)$	141.87	1.513E-06	
		420	$2FeCl3 \rightarrow Cl2(g) + 2FeCl2$	48.63	0.001771369	
		650	$3FeCl2 + 4H2O \rightarrow Fe3O4 + 6HCl + H2(g)$	23.90	0.01580	51.6%
		350	$4Fe3O4 + O2(g) \rightarrow 6Fe2O3$	-39.37	1135	
		400	$4\text{HCl} + \text{O2}(g) \rightarrow 2\text{Cl2}(g) + 2\text{H2O}$	-76.64	2657047.645	

Thermodynamic Results

Cycle	Name	Temperature	Reaction	ΔG	K	Efficiency
9	UT-3 Univ. Tokyo	600	$2Br2(g) + 2CaO \rightarrow 2CaBr2 + O2(g)$	101.8900379	6.28583E-06	
		600	$3FeBr2 + 4H2O \rightarrow Fe3O4 + 6HBr + H2(g)$	-37.95	186.28	17 6%
		750	$CaBr2 + H2O \rightarrow CaO + 2HBr$	-95.07	461816604	47.070
		300	$Fe3O4 + 8HBr \rightarrow Br2 + 3FeBr2 + 4H2O$	122.93	4.42731E-08	
10	Ispra Mark 13	850	$2H2SO4(g) \rightarrow 2SO2(g) + 2H2O(g) + O2(g)$	-68.36	1510	
		77	$2\text{HBr}(a) \rightarrow \text{Br2}(a) + \text{H2}(g)$	-125.55	5.36365E+18	46.6%
		77	Br2 (l) + SO2(g) + 2H2O(l) \rightarrow 2HBr(g) + H2SO4(a)	169.78	4.71168E-26	
11	Ispra Mark 9	420	$2FeCl3 \rightarrow Cl2(g) + 2FeCl2$	48.63	0.001771	
		150	$3Cl2(g) + 2Fe3O4 + 12HCl \rightarrow 6FeCl3+6H2O+O2(g)$	23.90	0.015799	44.2%
		650	$3FeCl2 + 4H2O \rightarrow Fe3O4 + 6HCl + H2(g)$	-19.98	292.2	
12	GA Cycle 23	800	$H2S(g) \rightarrow S(g) + H2(g)$	-136.71	2279787.497	
		850	$2H2SO4(g) \rightarrow 2SO2(g) + 2H2O(g) + O2(g)$	189.21	6.178E-10	
		700	$3S + 2H2O(g) \rightarrow 2H2S(g) + SO2(g)$	-230.20	2.270E+12	36.0%
		25	3 SO2(g) + 2H2O(l) \rightarrow 2H2SO4(a) + S	-290.18	6.86346E+50	
		25	$S(g) + O2(g) \rightarrow SO2(g)$	-300.12	3.78213E+52	
13	Mark 7A	420	$2FeCl3(l) \rightarrow Cl2(g) + 2FeCl2$	47.29	0.01148	
		650	3 FeCl2 + 4 H2O(g) \rightarrow Fe3O4 + 6 HCl(g) + H2(g)	48.63	0.001771369	
		350	$4Fe3O4 + O2(g) \rightarrow 6Fe2O3$	23.90	0.01580	30.2%
		1000	$6Cl2(g) + 2Fe2O3 \rightarrow 4FeCl3(g) + 3O2(g)$	-76.64	2657047.645	
		120	$Fe2O3 + 6HCl(a) \rightarrow 2FeCl3(a) + 3H2O(l)$	69.65	5.573E-10	

Summary of Results

- Positive Gibbs Energy prevents high conversion
 Le Chatelier's Principle
- Two cycles chosen for further investigation
 - Hallett Air Products: 99.7%
 - Sulfur-Iodine: 53.8% 24 kJ/mol

163 kJ/mol

Discussion of Results

- Thermodynamic analysis is not done until separation processes are included
- Ideal cycle
 - Best heat cascade efficiency
 - Most efficient separation process
 - Lowest total capital investment

1	Introduction
2	Sources of Energy
3	Power Source
4	Decision of Location-Nuclear

5	Cycles and Previous Studies
6	Thermodynamic Analysis
7	Molecular Discovery
8	Plant Design Analysis
9	Conclusions

What is Molecular Discovery?

- An algebraic model
 - A series of constraints solved by GAMS
 - Minimizes / Maximizes an objective function
 - Performs an exhaustive search within the molecular data entered
 - Can find undiscovered water splitting cycles

What is Molecular Discovery?

- Some constraints imposed are:
 - Acceptable Gibbs energy of reactions
 - Number of species per half reaction
 - Number of each individual species
 - Overall result of cycle splits water

Application to Water Splitting

- Minimize cost
 - Reduction of energy required to run cycle per mole of H₂ produced
 - Hot utility requirement (heat cascade analysis)
 - Objective function can find a minimum hot utility requirement

Original Model by Holiastos and Manousiouthakis

- Temperature range is specified
 - Only searches for solutions within this range
- Objective function is arbitrary
 - Minimized number of chemical species in reaction set
- Gibbs energy calculations based on linear estimate

Modifications Made to Original

- More meaningful objective function
 - Minimizes hot utility requirement of heat cascade analysis
 - HU corresponds to operating costs
- Thermodynamics based on Shomate equation
 - Includes Gibbs energy for reactions

Model Setup Conditions

- Temperature range of 400K 1400K
- One to four chemical species allowed per side of reaction
- A maximum of four of any one species per reaction

Model Setup Conditions

GAMS#	Species	GAMS#	Species
i1	Acetylene	i25	Potassium Peroxide
i2	1,1 Dichloroethane	i26	Copper(I) Oxide
i3	1,1,1-Trichloroethane	i27	Copper(II) Oxide
i4	Chloroethene	i28	Copper(II) Chloride
i5	Chloroethane	i29	Bromine Chloride
i6	Ethanol	i30	Dichloroethyne
i7	Carbon Monoxide	i31	Ketene
i8	Carbon Dioxide	i32	Bromoethene
i9	Chlorine	i33	Ethene
i10	Tetrachloroethene	i34	Bromoethane
i11	Hydrogen	i35	Ethane
i12	Water	i36	Ethylamine
i13	Oxygen	i37	Acetone
i14	Bromine	i38	Propane
i15	Hydrogen Bromide	i39	Formaldehyde
i16	Hydrogen Chloride	i40	Bromomethane
i17	Hydrogen lodide	i41	Chloromethane
i18	Hydrogen Sulfide	i42	Methylamine
i19	Sulfur Dioxide	i43	Nitromethane
i20	Sulfuric Acid	i44	Methylnitrate
i21	Calcium Oxide	i45	Methanol
i22	Iron(II) Oxide	i46	Methane
i23	Iron(II) Sulfate	i47	Hydrogen Peroxide
i24	Iron(III) Oxide		

Current Results

$$\frac{1}{2}C_{3}H_{6}O \rightarrow \frac{1}{2}C_{2}H_{2} + H_{2} + \frac{1}{2}CO \qquad (1400K)$$

$$\frac{1}{2}C_{2}H_{2} + H_{2}O + \frac{1}{2}CO \rightarrow \frac{1}{2}O_{2} + \frac{1}{2}C_{3}H_{6}O \qquad (400K)$$

- Gibbs energies of reactions 1 and 2 are 9.33 kJ/mol and 18.9 kJ/mol respectively
- Heats of reactions 1 and 2 are 416 kJ/mol and 14.8 kJ/mol respectively
- Hot utility requirement is 414 kJ/mol H₂
- Cascade efficiency is 70.0%

Discussion / Limitations

- Only two reactions per set
- Cannot account for phase changes
 - Except water
 - Limits temperature range / species
- Reaction temperatures are specified by the user
- Reactions discovered might not really occur as written and therefore need further analysis
 - Side reactions, catalysts, etc... need to be considered

Future Work

- Automatic selection of applicable Shomate constants for a chemical species according to temperature
 - This will extend the temperature range that can be searched (allows for phase changes of species)
- Give list of top results
- Explore possibility of three reaction sets
- Exhaustive search of temperature range settings
 - Using a control loop

Hallett Air Products

- Plant cost for daily production of 500 tonnes/day
 - \$1.1 Billion Total Capital Investment
- Energy Costs
 - 14 kWh (t)/kg of H₂ produced
 - 38.7 kWh (e)/kg
- Cost of Hydrogen
 - \$2.03/kg
- Selling Price of Hydrogen
 - \$4.75/kg

<u>Fab</u>	ricated Equipment		
	Electrolyzer		\$143,000,000
-	Absorber Tower		\$2,802,800
-	Heat Exchangers		\$657,800
-	Distribution Pipes		\$335,000,000
-	Reactor		\$2,255,100
-		Total Fabricated Equipment:	\$483,715,700
<u>Proc</u>	cess Machinery Pump		\$1,287,000
		Total Process Machinery:	\$1,287,000
<u>Stor</u>	age		
	Hydrogen Storage Tanks		\$272,000,000
-		Total Storage:	\$272,000,000

Sulfur-Iodine

- Plant cost for daily production of 500 tonnes/day
 - \$1.5 Billion Total Capital Investment
- Energy Costs

 75.7 kWh (t)/kg of H₂ produced

Reactor	\$429,000,00
Distribution Pipes	\$335,000,00
	Total Fabricated Equipment: \$764,000,00

Storage

Fabricated Equipment

Storage Tanks

Cost of Hydrogen	

- \$1.60/kg
- Selling Price of Hydrogen
 - \$4.75/kg

HydroNūc, Inc.

\$272,000,000

Total Storage: \$272,000,000

Profitability

Hallett Air Product Cycle with Transportation & Storage

The Investor's Rate of Return (IRR) for this Project is:	10.28%
--	--------

The Net Present Value (NPV) at 10% for this Project is: \$ 30,605,100.00

ROI Analysis (Third Production Year)

Annual Sales:	\$390,270,200
Annual Costs:	-367,963,000.00
Depreciation:	-78,607,200.00
Income Tax:	\$20,831,000
Net Earnings:	\$43,138,200
Total Capital Investment:	\$1,107,337,800
ROI	3.90%

Profitability

Sulphur Iodine Cycle with Transportation & Storage

The Investor's Rate of Return (IRR) for this Project is:	8.26%
--	-------

The Net Present Value (NPV) at 10% for this Project is: -247,152,500.00

ROI Analysis (Third Production Year)

Annual Sales:	390,270,200.00
Annual Costs:	-388,301,600.00
Depreciation:	-107,578,200.00
Income Tax:	39,075,600.00
Net Earnings:	41,044,200.00
Total Capital Investment:	1,512,901,900.00
ROI	2.70%

1	Introduction
2	Sources of Energy
3	Power Source
4	Decision of Location-Nuclear

5	Cycles and Previous Studies
7	Molecular Discovery
8	Plant Design Analysis
9	Conclusions

Conclusions

The economic analysis is based an "existing hydrogen economy."

- Hallett Air Product
 - Low capital investment
 - High profitability
 - Lower thermal efficiency
- Sulfur-Iodine
 - High capital investment
 - Better thermal efficiency
 - Low profitability

Based on this we recommend the Hallett Air over the sulfur-iodine cycle

Recommended Future Studies

Investigate

- "Hydrogen Economy"
 startup planning
- Westinghouse difficulties can be overcome
- Transportation of Hydrogen
 - Trailers
 - Number of Hydrogen
 Stations
 - Railway
- Further study with Molecular Discovery using extended databases

Thank you for your attention!

Contact: John.A.Coppock-1@ou.edu prgerber@ou.edu cramos@ou.edu Nicholas.M.Anderson-1@ou.edu

