Flame Retardants

Group 4—April 8th Danielle Keese Jeff Mueggenborg Esan Savannah Ha Nguyen

Dangers of Fire (United States in 2002)

- Someone died in a fire every 3 hrs and someone was injured every 37 minutes
- **401,000** home fires
- Residential fires caused more than \$6.1 billion in property damage

What is a Flame Retardant?

- A chemical added to combustible materials to render them more resistant to ignition
- Minimizes the risk of fire starting
- Increases the safety of lives and property

What is a Flame Retardant?

4 major family of Flame Retardant

Provides for a safer material without compromising performance

Flame retardants work to slow or stop the combustion cycle

Combustion Cycle

 Flammable materials are decomposed to release energy in the form of heat and light

Combustion of hydrocarbon:

$$C_x H_y + O_2 \xrightarrow{spark} nCO_2 + n'H_2O + \Delta H$$

- Examples of combustion:
 - Phosphorus

 $CH_3PH_4 + 4O_2 \rightarrow CO_2 + 2H_2O + H_3PO_4 + \Delta H$

Methane Chloride

 $CH_{3}CIH_{2} + 2O_{2} \rightarrow CO_{2} + H_{2}O + HCI + \Delta H$

Polymeric Plastic Combustion

- The combustion reaction takes place in the vapor phase
- 3 phases of products of pyrolysis:
 - 🗆 Liquid
 - □ Solid
 - Vapor

Flame Retardant Families

Halogenated FRs

Chlorinated

- Wider Temperature range for radical release
- Used most commonly as a paraffin additive

Brominated

- Most common FR in production
- Five classifications, with over 75 compounds on the market
- High degree of control over release temperature

Halogenated FRs

- Act in the Vapor phase
- Reduce the heat generated by flames, thereby inhibiting the formation of flammable gases
- Behave according to a "Free Radical Trap" theory

Halogenated FR Mechanism

Free Radical Trap mechanism

$$R_{n}(Br)_{x} \xrightarrow{heat} R_{n} \cdot +Br \cdot$$

$$Br \cdot +H \cdot \rightarrow HBr - \Delta H$$

$$OH \cdot +HBr \rightarrow H_{2}O + Br \cdot$$

$$H \cdot +OH \cdot \rightarrow H_{2}O + \Delta H$$

Process regenerates halogen radicals to perpetuate the reaction.

Phosphorus Containing FRs

Additive to material it's protecting

Acts in solid phase

- □ Reacts to form phosphoric acid
- □ Acid coats to form "char"
- Char slows down pyrolysis step of combustion cycle

Phosphorus Containing FR Mechanism

Thermal decomposition leads to the formation of phosphoric acid:

$$R-CH_{2}-CH_{2}-O-P - \xrightarrow{i} R - CH_{2} = CH_{2} + HO - P - i$$

Phosphorus Containing FR Mechanism

Phosphoric acid formed esterifies, dehydrates the oxygen-containing polymer and causes charring:

$$-CH_{2}-CH_{2}-OH + -\frac{P}{P}-O-P \rightarrow -CH_{2}-CH_{2}-O-\frac{P}{P} \rightarrow + -P \rightarrow OH$$

$$-CH_{2}-CH_{2}-O-\frac{P}{P} \rightarrow -CH_{2}= CH_{2} + -\frac{P}{P} \rightarrow CH \rightarrow CHARRING$$

Phosphorus FR Pros

- Efficient FR Performance
- Needed Dosage Lower than Halogenated FRs
- Does Not Produce Toxic Smoke
- Does Not Produce Toxic Dioxins and Furans

described in more detail later

Phosphorus FR Cons

- Higher price/kg than Halogenated
- Have Limited Industrial Uses because of Mechanism
 - Char layer undesired in FR pajamas and similar products

Uses of Phosphorus Containing FRs

- Common Uses
 Plasticizers
 Plastics
 Polyurothano Eco
 - Polyurethane Foam

Nitrogen Containing FR Mechanism

- Not a fully understood mechanism
- What is known:
 - □ Nitrogen gas is released into the atmosphere
 - Inert gas lowers the concentration of flammable vapors
 - Melamine transforms into cross-linked structures which promotes char formation
- Uses: Foams, Nylons and Polymers

Nitrogen FR Pros/Cons

Pros

Can *partially* replace other FRs

Cons

- Must be used in high concentrations
- Usually needs to be with other FRs
- More experimentation needed to determine if it will work, because the mechanisms are not well understood

Inorganic FRs

- Undergo decomposition reactions
- Release of water or non-flammable gases which dilute the gases feeding flames
- Adsorption of heat energy cools the fire
- Production of non-flammable, resistant layer on the material's surface
- Uses: PVC, Wires and Propylene

Common of Inorganic FRs

- Aluminum Hydroxide
- Magnesium Hydroxide
- Boron containing compounds
- Antimony Oxides
- Inorganic Phosphorus compounds

Inorganic FRs Pros/Cons

Pros

- Low Cost
- Incorporate Easily into Plastics

Cons

Large Concentrations Needed

Problem Statement

Banned Chemicals

Penta- and Octa-bromodiphenyl ether
Where m + n = 5 for penta, =8 for octa

Banned Chemicals

- Penta- and Octa-bromodiphenyl ether banned in:
 - California by 2008
 - □ Europe as of next year
- Banned because of Environmental Concerns

Environmental Concerns

- Ignition of brominated FR produces toxins found in soot
- Toxins have not been detected in fire's gases
- No deaths have been documented to date
- Toxins are known as dioxins and furans

Toxins

Dioxin

Furan

Dioxin and Furan

- Unintentional by-product of many industrial processes
- Causes cancer in animals
- Causes severe reproductive and developmental problems
- Damages the immune system and interferes with hormonal systems
- Formed by burning halogen-based chemical compounds with hydrocarbons

- Molecular simulation involves using computer algorithms "derived from statistical mechanics to predict the properties of molecules and molecular assemblies"
- Models depend on intra- and inter-molecular interactions and computed group contributions (which come from published tables)

Desired Characteristics
 Ease of ignition
 Rate of Decomposition
 Fuel contribution
 Intensity of burning
 Products of combustion

 Group Contribution equations can be used to simulate relevant properties:

 Auto-ignition Temp
 Upper and Lower Flammability limits
 Diffusivity in Air and Water
 Vapor Density and Pressure
 Normal Melting and Boiling Points
 Gibbs Free Energy

- Molecule simulation performed using excel spreadsheet
- Group contribution data were input from Perry's Handbook and Boethling & Mackay
- Calculated Boiling Point, Critical Constants, Enthalpies of Vaporization, and Fusion
 - These properties were used to determine flame retardant capabilities of each molecule

- Determination of Phosphate Group Properties
 - □ Critical Constants for phosphoric acid from Pro-II
 - Using Excel spreadsheet and Pro-II data, solve for phosphate group contribution to T_{boil}, T_c, P_c, and V_c
 - We can now simulate properties for molecules containing the phosphate group

Discovery Process

- Limitations of group contribution method will not allow for ideal molecule discovery
- Approach changed to simulation of known organic molecules containing phosphate (LINK)
 - Excluded aromatic molecules and transition metals based on desired properties of final product
 - □ Discarded molecules with BP lower than 513K
 - Ranked remaining four molecules according to vapor pressure at plastic melting point

Ranked Molecules & Properties

					(± 10 - 30%) Vapor P	
		Tc	Pc	Vc		
		(K)	(MPa)	(m ³ /kmol)	@ 513K	
Rank	Molecule	eq 2-3	eq 2-7	Eq 2-14	(MPa)	(atm)
1	Tri-n-Butyl Phosphate	800.5	1.379	0.959	0.0019	0.0187
2	Tri-ethyl Phosphate	804.8	1.969	0.629	0.1996	1.970
3	Tri-Isopropyl Ester	771.1	1.667	0.782	0.2556	2.523
	Tris(2,3dibromopropyl)					
**	phosphate	613.1	1.579	0.782	6.05 x10 ⁶	59.71x10 ⁶

Tris(2,3-dibromopropyl) Phosphate

- Molecule simulated with strong performance indicators
- Structurally capable of retarding flames in both solid and vapor phases
- Unfortunately, already on the market as "Firemaster t23p" by the Great Lakes Chemical Co.

Properties of Tri-n-Butyl Phosphate

Flame-O 1000™

Flame-O 1000 [™] Properties

- Critical Temperature
 800K
- Critical Pressure 1.38 MPa
- Critical Volume 0.943 m³/kmol
- Vapor Pressure @ 513K
 0.019 atm
- Boiling Point

$\mathbf{V}_{\mathbf{v}}$			
	-0 0=		
	~p- <	-0	
	\geq		
	\rightarrow		

Synthesis Path-Final

Creation of Tri-n-Butyl Phosphate
 N-butanol
 Phosphoryl Chloride

Raw Materials

N-butanol

- Readily available
- Can be purchased from a number of sources
- Phosphoryl chloride
 - Less common
 - □ More expensive
 - Highly Reactive

Reasoning for Final Synthesis

- Occurs at room temperature due to high reactivity of phosphoryl chloride
- Occurs quickly due to high reactivity
- Occurs with a high conversion
- Should Test for the kinetics

Synthesis Path-Alternate

Creation of Tri-n-Butyl Phosphate 1-Bromobutane Phosphoric Acid

Raw Materials

1-bromobutane
 Readily Available
 Relatively Cheap

Phosphoric Acid
 Readily Available
 Relatively Cheap

Reasons Eliminated

Requires heat for reaction to occur

Slow reaction

Low conversions

Tri-n-Butyl Phosphate Testing Materials

- Tri-n-Butyl Phosphate
- Polypropylene
- Metal Grills
- Acetylene Torch
- 2 Bricks

Camera

Tri-n-Butyl Phosphate Testing Set Up

- Set up a horizontal metal grill with consistent and uniform flames provided below
- Flames should come from the side to prevent melted plastic from dripping on the burners
- Set-up mimicked 94 HB Horizontal Burn Test

Tri-n-Butyl Phosphate Testing Set Up

Tri-n-Butyl Phosphate Testing Procedure

- Prepare samples (10g total weight)
 - 1 as Standard
 - 1 as Coated
 - □ 1 as Additives
- Applied flames underneath keeping constant distance until samples ignited then removed flame
- Observe and document melting point and other characteristics of each sample

Tri-n-Butyl Phosphate Testing

Testing Results

Run		Untreated	Treated	Coated
2	Start Burning	11.5 s	14.6 s	14.5 s
	Go Out/Consumed	30.9 s	75.5 s	43.2 s
3	Start Burning	15.0 s	21.6 s	25.0 s
	Go Out/Consumed	30.5 s	67.7 s	53.6 s
4	Start Burning		21.4 s	23.4 s
	Go Out/Consumed		112.8 s	78.7 s

All times signify the time when it occurs, from zero

Testing Conclusions

- Noticeable difference between treated and untreated
 - At least twice as much time to catch fire and be fully consumed
- Coated samples produced the most smoke and overall performance was less effective than the treated samples
- Preferred method of applying Flame-O1000[™] to plastic is as an internal additive as opposed to coating

The Market

World Market

- Global production: 2.2 billion pounds
- Global value: \$2.1 billion
- As of 2002, the global market
 - 24% phosphorus
 - □ 27% inorganic
 - 🗆 6% chlorine
 - 39% bromine
 - □ 4% other

US Market

- 50% of the global market
- United States production:1.1 billion pounds
- United States value: \$1.3 billion
- US breakdown is very similar in-group distribution to the global breakdown.

Brominated Market

- Major market contributor being phased out
 Large void to fill
- Brominated FRs account for
 Globally: \$819 million
 US: \$507 million

Brominated Market

- Brominated FR Market Breakdown
 - Transport
 - Building and construction
 - Textile/other
 - Electrical & electronics

Phosphorus Market

Phosphorus FRs account for
 Globally: \$504 million
 US: \$312 million

Good market for our product to breach

Sellers

Brominated

- □ Great Lakes Chemical
- Albemarle
- Dead Sea Bromine Group

- Phosphorus
 - Great Lakes Chemical
 - □ Albemarle
 - □ Dow Chemicals

Market Status

Demand to increase

□ Production:

• Up 3.6% per year from 1.1 billion pounds in 2003

□Value:

Grow 5.9% annually

Due to higher standards and higher use in industry

Due to specialty FRs that increase their share of the market

Market Status

More items are being made from plastics

Plastics reduce weight by eliminating:

- Glass and metal
- Lower production costs
- Improving design and production flexibility
- Need for more FRs in specialized plastic FRs will increase as well.

Business Plan

Business Plan

- Computers are cased in plastics
- Cost of computers are becoming cheaper
- Demand for computers is a necessity
- Computer market is growing
- KSM will target the computer industry

Potential Buyers

- Hewlett Packard / Compaq
- Dell Computers

U.S. Computer Employment Vs. Texas Computer Employment

Index, January 1993 = 100

NOTE: U.S. series taken from SIC 3571, Electronic Computer Manufacturing; Texas series taken from NAICS 3341, Computer and Peripheral Equipment Manufacturing. SOURCE: Bureau of Labor Statistics.

Location

Hewlett – Packard / Compaq

- Based in Palo Alto, California
- Compaq based in Houston, Texas
- □ Responsible for 44% of Texas computer employment
- Dell Computers
 - □ Based in Austin, Texas
 - □ Responsible for 52% of Texas computer employment

Target Company

Dell Computers

- Major Contributor to Computer Sales
- Sell a Variety of Electronic Devices
 - Desk Top Computers
 - Lap Top Computers
 - MP3 Players
- Convenient Plant Location

Investment Opportunity

- Initial Investment
 - □ \$4 Million to license the chemical modeling of Flame-O 1000[™]
- Plant Addition will be constructed in six months
- Start construction with initial payment

Economics of Plant Design

Cost of equipment

	V _{Batch Reactor} m3	\$	V _{flash Drum} m ³	\$	Storage tank (500m3)	Total equipment cost
1	3.13	\$38,802	3.13	\$23,500	\$ 118,662	\$ 180,964
2	3 79	\$42 936	3 79	\$24 000	\$ 125 185	\$ 192 121
		¢. <u>_</u> ,000		<i> </i>	¢ 120,100	· · · · · · · · · · · · · · · · · · ·
3	5.71	\$53,333	5.71	\$25,300	\$ 131,708	\$210,341
4	7.00	\$59,403	7.00	\$25,900	\$ 138,231	\$ 223,534
5	8.22	\$64,673	8.22	\$26,400	\$ 144,754	\$ 235,827
6	10.34	\$73,021	10.34	\$37,100	\$ 151,277	\$ 261,398
7	14.10	\$86,043	14.10	\$40,100	\$ 157,800	\$ 283,943

Cost of Raw Materials

	Product (TBP) mi kg/yr	n-Butanol mi kg/yr	POCl3 mi kg/yr	Total cost
1	1.11	1.16	0.80	\$2,327,260
2	1.23	1.28	0.88	\$2,578,856
3	1.54	1.61	1.11	\$3,228,811
4	1.70	1.77	1.22	\$3,564,272
5	1.85	1.93	1.33	\$3,878,767
6	2.09	2.18	1.51	\$4,381,958
7	2.50	2.61	1.80	\$5,241,577
Economic

- Product cost: \$10/kg
- Operating labor: 3-6workers/ 3shifts/ day
 Labor cost: \$15/hr
- Utility cost: electricity cost for Reactor and Flash Drum based on PRO II simulation
- Project plan: 10 year period

Economic

	FCI	TCI	Return on Investment %/y	NPW
1	\$5,003,264	\$ 5,180,428	17.99	\$ 1,669,770
2	\$5,065,119	\$ 5,253,205	31.44	\$ 5,245,383
3	\$5,166,131	\$ 5,372,054	60.48	\$13,062,043
4	\$5,239,272	\$ 5,458,112	76.68	\$17,616,713
5	\$5,307,425	\$ 5,538,300	87.23	\$20,746,777
6	\$5,449,191	\$ 5,705,099	109.20	\$27,527,987
7	\$5,574,180	\$ 5,852,160	143.73	\$38,179,620

Includes licensing fee

Net Present Worth vs. Capacity

Risk Analysis

- Base capacity of 1,230,000 kgs/yr was proposed
- The capacity was picked by:
 - □ Taking the available US market (1.1 billion pounds)
 - □ Multiplying by 39%
 - wt% brominated FRs
 - □ Multiplied by 20%
 - assumed fraction missing due to the ban/phase out
 - □ Multiplied by 3.5%
 - fraction of the market our product will replace

Risk Analysis

Product-selling price was \$10/kg

Based on Great Lakes Chemical's average phosphorus price of \$12/kg

Capacity range:

- □ 1,110,000 to 2,500,000 kg/year
- Base standard deviation of 40% for:
 - Capacity
 - Product price
- Net present worth (NPW) was exported to create risk curves, seven risk curves were made

Risk Curve

Economic

Risk curve #5 was chosen

Capacity: 1.85 million kg/yr

NPW: \$20,700,000

ROI: 87%

Questions