De-inking Plastic Films

Elizabeth Beaudoin

Kristin Fraser

Beverly Pate

Problem Statement

- Develop de-inking process considering
 - Type of plastic film
 - Collection strategies
 - Cost of production

What is De-Inking?

 De-inking - removes ink, dyes, and other contaminates from a given material

Why De-Ink?

 Growth of demand in plastics leads to an increase in plastic waste

 Poor physical and mechanical properties due to residual ink

Why De-Ink?

o Removing ink increases quality

De-inked plastic has a higher selling value

Problems with Recycled Plastic

 Strength and elongation at break are decreased

o Gases formed in extruded polymer

o Color from residual ink

Project Milestones

- 1. Understand mechanism
- 2. Separation techniques
- 3. Recovery issues
- 4. Marketability
- 5. Plant location optimization
- 6. Profitability

To Understand Ink Attachment

- 1. Composition
- 2. Surface tension
- 3. **pH**

What is Ink Composed of?

- 1. Pigments
- 2. Binders
- 3. Carriers
- 4. Additives

Surface Tension

o Caused by cohesion forces

 Broken when cohesive forces are overcome by a stronger force

o Surfactants create this atmosphere

Corona Discharge

pH

 Causes the binder to agglomerate or extend

 Isoelectric point - pH at which the number of anions and cations are equal

Ink Detachment

- 1. Deprotonation
- 2. Surface adsorption
- 3. Ink detachment
- 4. Solubilization and stabilization

Deprotonization

Low pH

High pH

8Gecol, Hatice, Colloid Polymer Science 2004

Surface adsorption

- o Plastic
 - Why pick Wal-Mart bags?
 - o Water-based ink
 - o Made of HDPE
 - Wal-Mart donates used bags

o Base

- Isoelectric point pH of a solution at which the net charge of a molecule is zero
 - o 3.1 for carboxylic acid
- A pH of 12 is used

- o Deionized water
 - Eliminates ions that could react with the deprotonated carboxylic acid groups

- o **Surfactant** linear molecule that modifies surface tension
 - Four types of surfactant:
 - 1. Cationic
 - 2. Anionic
 - 3. Amphoteric
 - 4. Nonionic

- Surfactant continued
 - To increase de-inking efficiency
 - 1. Longer alkyl chain length
 - 2. Higher surfactant concentration

 Hexadecyltrimethylammonium bromide

Solution Cleaning

- o Hydrocyclone
 - Density separator

Modified Hydrocyclone

- The heavy stream exit flow can get clogged
 - Accumulation chamber resolves this problem

Considered Agitation Techniques

- Multiple CSTs with net separation
- 2. Batch industrial washing machine

Separating Techniques

1. Froth Floatation

2. Anionic Exchange Chromatography

3. Centrifuge

Marketability

- o HDPE usage increases annually
- o There is a larger demand for recycled plastic than can be met
- Nonrenewable natural resources used to make plastic are being depleted
- The economic feasibility of de-inking HDPE will likely increase in the future

Market Size

- Amount of plastic possibly recovered in 2006 is 96 thousand tons
 - 45% of plastic is film
 - 70% of plastic film is HDPE
 - Assume 15% recovery
- * Bags recovered ~ 5,000 tons/year

- Location Model created in GAMS
 - Optimize profit by minimizing transportation costs
 - Determine optimal location
 - Infeasible solution

- Plant location determined using excel simulations
 - 1. Calculated distances
 - 2. Calculated bags available
 - 3. Compared revenue and transportation costs
 - Transportation cost = distance * cost of traveling

- 4. Determined profitability
- 5. Calculated total transportation cost
- 6. Compared NPW of possible plant locations

- o 3 possible plant locations
 - New Rochelle, NY
 - Greenwich, CT
 - Englewood, NJ
- o Optimal Plant location:
 - Englewood, NJ

Equipment Costs

Equipment	Price	Quantity	Total
Washer/Dryer	\$236,021	1	\$236,000
Soaker	\$5,439	4	\$22,000
Hydrocyclone	\$138,886	1	\$139,000
Extruder	\$488,909	1	\$489,000
Pelletizer	\$92,917	1	\$93,000
Recycle Tank	\$4,958	1	\$4,960
Slicer	\$4,305	1	\$4,300
Storage Tank	\$13,257	1	\$13,000
Pump	\$1,750	1	\$1,750
Trucks	\$100,000	1	\$100,000

Total

\$1,102,758

Profitability

Fixed Capital Investment	\$7,170,060
Working Capital	\$1,265,310
Total Capital Investment	\$8,435,400
Total Product Cost	\$6,193,917

Profitability

Pay-Out Time, POT	4.2985
Return on Investment, ROI	16.03%
Net Present Worth	\$1,750,8 26

Recommendations

- Consider expansions and multiple plant locations
- o Extend project life
- Consider de-inking other forms of HDPE

Questions?

Main Polymers Used in Plastic Film

$$\begin{array}{c} \text{CH}_2\\ \text{CH}_2\\ \text{CH}_2\\ \text{CH}_2 & \text{CH}_2\\ \end{array}$$

The branches prevent the nonlinear molecules from packing as closely as the linear, reducing their density

LDPE vs. HDPE

- HDPE is made by Ziegler-Natta vinyl polymerization
 - Uses a transition metal to initiate polymerization
- LDPE is made by free-radical polymerization
 - Uses an initiator molecule that breaks into free radicals. The unpaired electrons attack ethylene's C=C forming new radicals