REPLIDERM Inc.

GROUP 8

Tiwalade Ashaye, Joseph Azzarello, Ben Fairbanks, Mitch Hargis, Krupa Patel, Holap Tang

OVERVIEW

- Background/Review of current conditions
- Objective of RepliDerm
- Production plan
- FDA Approval Process
- Business/Market Plan

BACKGROUND

Problem

- 270,000 burn victims per year in the U.S. requiring hospitalization
- 1.5 million diabetic patients in the U.S. with wound ulcers
- Various narcotizing infections (flesh eating infections)

Treatments Available

- Split thickness autograft
- Donor allograft
- Synthetic allograft
- Synthetic allograft with seeded neonatal fibroblasts
- Temporary covering from biological donor

Advantages of Existing Treatments

Procedure (Product)	Advantages	Disadvantages	Price/in ²
Split Thickness Autograft (Surgical treatment)	Inexpensive No rejection	Extensive scarring Limited donor sites	\$0
Donor Allograft (AlloDerm)	Relatively Inexpensive	Disease transmission 10% Rejection Small wounds only	\$7/in ²
Synthetic Allograft with Seeded Cells (Epicel)	No epidermal graft needed 5% Rejection	Fragile	\$102/in ²
Synthetic (Integra)	Strong & supple Protective layer 5% Rejection	Epidermal autograft required	\$42/in ²

Mechanism for Angiogenesis

Product Objective

 To produce a synthetic dermal replacement template that increases the speed of vascularization and quality of burn and wound treatment.

Growth Factors

- Basic Fibroblast Growth Factor-BFGF
- Acidic Fibroblast Growth Factor-AFGF
- Platelets Derived Growth Factor-PDGF
- Vascular Endothelial Growth Factor-VEGF

VEGF Stimulation of Angiogenesis

Methods of Delivery

Daily Injections

- VEGF in the crosslinked collagen matrix
- VEGF in suspension in pores of matrix
- Controlled release microparticles

Controlled Release particles

- Optimize rate of vascularization by altering:
 - Number/VEGF Concentration of Microcapsules
 - Location of Microcapsules
 - Size of Microcapsules

Microcapsule Diffusion Model

- A model of the VEGF's motion through the implant could be created and used to create a more-effective product
- If a model with predictive capabilities was created, then the ideal initial concentration and placement of the microbeads could be determined

Microcapsule Diffusion Model

Z=+L	
	Region #1
Z=0	Layer containing Microbeads (#2)
Z=y(t)	Region #3
Z=-L at y	⁽⁰⁾ Living Tissue (Region #4)
	Living Tissue (Region #4)

Microbead region releases VEGF with rate r* and at a concentration c*

- No flux across top layer: (δc/δz = 0 @ z=L)
- Bottom layer rises with time as tissue vascularizes into graft
- Living tissue carries away VEGF with a rate k_vf(c₃)
- Regions 1,2, and 3 have a diffusion coefficient D₁
- Region #4 has diffusion coefficient D₂
- Molar fluxes are equal at region interfaces

Microcapsule Diffusion Model

• With the model described in the previous slide, the following expression is obtained:

 y(t) (the "rate of healing") can be approximated from the above model

PRODUCTION PROCESS

REPLIDERM PRODUCTION PROCESS

REPLIDERM PRODUCTION

- Raw material needed
- Equipments needed
- Description of process
- Human labor needed
- Facility layout

REPLIDERM Production

Raw materials needed

- Equipments needed
- Description of process
- Human labor needed
- Facility layout

REPLIDERM Production (Raw materials)

	Procedure (Product)	Description	Use
	Bovine Collagen	Extracellular protein	Support and structure of matirx
	Chondroitin 6-Sulfate	Glycoproteins known as proteoglycans found in shark cartilage	forms the ground substance in the extracellular matrix of connective tissue.
	Silastic	Silicon layer	Used as a temporary barrier to protect against infection
	PLGA(polylactic glycolic acid	Biodegradable, biocompatible polyester	Manufacture of microspheres
	PEG (Polyethylene- glycol)	Polymer	Speeds up degradation of the microbeads. It also forms the sphere shape of the beads
	VEGF	As described earlier	A protein growth factor

REPLIDERM Production

Raw material needed

Equipments needed

- Description of Process
- Human labor needed
- Facility layout

Repliderm Production (Equipments Needed)

Blender

Tissue Homogenizer

Vacuum oven

Vortex

- Small Equipment
- Batch processes

Centrifuge

REPLIDERM Production

- Raw material needed
- Equipments needed

Description of Process

- Human labor needed
- Facility layout

REPLIDERM PRODUCTION PROCESS

Before Microbead addition...

Collagen

REPLIDERM PRODUCTION PROCESS

After Microbead addition...

Microcapsule Production

Raw materials -

- PLGA Poly(lactic-co-glycolic) acid (50:50)
- PEG (Polyethylene- glycol)
- VEGF (Vascular endothelial growth factor)
- Albumin
- PVA (polyvinyl alcohol)
- Isopropanol

MICROCAPSULE PRODUCTION

REPLIDERM Production

- Human Labor Needed
 - Minimum 1PhD, 3 technical assistants
- Facility Layout (30,000sq-ft)
 - 1 cryo room, Storage, Offices,
 Animal storage, Laboratory testing,
 2 Production rooms

Quality Control

- 1% of all sheets produced to be selected at random and tested for quality assurances
 - All of sheets to be tested are halved. Half of each sheet are tested on a chorioallantoic membrane.

The remaining halves are tested in vitro with vascular endothelial cells
FDA PROCESS

FDA Approval Process

- Most costly and time consuming step in bringing a new product to market.
- REPLIDERM is a Class III medical device. Class III medical devices are those that are implanted into a patient and left in the body.
 - Non-clinical testing
 - Manufacturing and facility testing
 - Clinical testing

FDA Approval Process

- Modular Pre-Market Approval Process
 - Module 1: Non-clinical Trials
 - Module 2: Manufacturing & Facility Testing
 - Module 3: Human Clinical Trials

FDA Testing

- Historically FDA testing requires \$200,000,000 to \$300,000,000 and can last 10-15 years.
- It is this cost and time delay the FDA testing is the most critical step in bringing a new product to the market.

First Stage Variables

- A 1st Stage Variable is a decision that must be made before any production begins.
- For our project, we have two 1st Stage Variables:
 - The number of personnel to hire
 - The number of experiments to run before submitting our product to FDA evaluation.

Second Stage Variables

- A 2nd Stage Variable is a decision that is made after an outcome.
- For our project, we have several 2nd Stage Variables:
 - Each 2nd Stage Variable is a choice on whether or not to continue after an FDA Failure.
 - The chance of having an FDA Failure is dependent on the amount of tests conducted prior to FDA review.

First Stage Variable

• Number of Personnel Options:

- 1 Ph.D. and 3 Lab Technicians
- 1 Ph.D. and 5 Lab Technicians
- 1 Ph.D. and 7 Lab Technicians
- Number of Experiments to Run Prior to submission to FDA review:

Set	Cell Tests	CAM Tests	Nude Mice	Guinea Pigs	Pigs	Dogs
А	100	100	100	100	100	100
В	100	100	50	50	50	50
С	50	50	50	50	25	25

Second Decision (First Stage Variable)

Set	Description	Description
Set A	100 Cell Flask, 100 CAM, 100 Nude Mice, 100 Guinea Pig, 100 Pig, 100 Dog Tests	More time and money spent up front, but higher likelihood of passing FDA trials on 1 st try.
Set B	100 Cell Flask, 100 CAM, 50 Nude Mice, 50 Guinea Pig, 50 Pig, 50 Dog Tests	Compromise on time and money, but the chances of passing FDA are less than A.
Set C	50 Cell Flask, 50 CAM, 50 Nude Mice, 50 Guinea Pig, 25 Pig, 25 Dog Tests	Lest costly, but higher likelihood of being forced to repeat some FDA trials.

Initial Grant Money

- The initial amount of grant money that we obtain will be the deciding factor in which employment option and which testing option we choose.
- Initial grant money will be obtained from the NIH, NSF, CDC, and other various government granting agencies.

FDA APPROVAL

First Decision (First Stage Variable)

1 PhD & 3 Technicians Salary: \$170,000/yr Working hr: 24hrs/day

Selection of Employees

- Decision is based on the amount of initial grant money available.
- The more technicians the shorter the time required to run the same amount of test. Start

1 PhD

Worki

Sala

Second Decision (First Stage Variable)

Number of experiments

Selection of Experiments

- Set A more experiments run concurrently, more indepth testing and increasing the chances of passing the FDA trials on the 1st try.
- Set C costs the least, begins the FDA testing quicker, but a higher likelihood of failure.

All sets of experiments
 Phperformetherisiane types
 Salarye \$205,000/yr
 Working hr: 24hrs/day

Failure in FDA Approval (Second Stage Decision)

Example: Module 1 Failure Module 1 (Non l testing) Collagen Mat Collagen Matr Microbead Failure Approval

Fixing a Failure with the Concentration of VEGF in the Microbeads

- Cost of Fixing:
 - \$12,000 total
 - \$6,000 for beads themselves
 - \$2,000 for cell and CAM tests
 - \$2,000 for small animal tests
 - \$2,000 for labor
- Time required is 14 days:
 - Cell, CAM, and small animal tests will be run concurrently

Example: Pathway

FDA Decision

- 9 decisions
- Each decision contains 738 pathways
- Total pathways: 6642 pathway
- Calculated by Excel
- Each pathway contains its cost, duration and probability

Comparison of different set of experiments

Option to Chose

• 1 Ph.D. and 7 technicians

• Perform test set A

Justification

- Different kinds of failure may occur.
- The easiest problem to fix is one that does not occur.
- Costs escalate rapidly with every time a product must be reevaluated by the FDA.

BUSINESS PLAN

Cost Evaluation

FCI

- Direct cost \$8,960,000
 Equipment cost, Installation cost, Building & facility cost, Service charges, Raw material cost, Quality control
- Indirect cost \$350,120,000
 FDA cost, Engineering and supervision

Business Goal

- Obtain the major part of research cost from following sources
- NIH, NSF, CDC
- Production of new allograft Repliderm with the rate of 2220 sheets/month
- Breakeven in 2-3 years

Demand in the Market

Current Market Demand

Market Demand Model

$$\beta$$
 (t, x) $p_1 d_1 = p_2 (D - d_1) \alpha$ (t, x)

D – Total Production Demand – 500,000

- d₁- REPLIDERM Demand
- p₁ *REPLIDERM* Price/sheet
- p_{2-} Competitor's Price/sheet
- x Marketing

Production rate & sale price

$$\sum_{i=1}^{3} p_1 d_{1i} - PC = FCI$$

Product price = \$ 1870 / sheet Production rate = 2220 sheets / month (1st yr)

Marketing

Product distribution

- 56 hospitals every six months
- 3 national conferences annually
- 2 International conferences annually
- Tradeshows and fellowship

Cumulative Cash Position

- Increase in production rate following the model
 - Initially 26645 sheet / year
- Increase in staff by 25%
- Increase Marketing by 10-20%

Cumulative Cash Position Forecast

Location Selection

• Factors considered

- NIH funding
- Employment in Biotech companies
- Cost of living
- Number of private biotech companies
- Number of Hospitals
- Corporate tax rate
- Fairfield, CA

Conclusion

- Control release delivery system
- Pre-FDA testing by 8 personnel
- Testing Set A
- Sale price \$1870 / sheet
- Production rate 27000 sheets / year

Acknowledgements

- Dr. Bagajewicz
- Dr. Sikavitsas
- Dr. Yannas (Integra LifeScience)
- Timothy King and Charles Patrick (University of Texas)

QUESTIONS????

