Oxygen on the Moon
Grou, 3
Tyler Wati
Brian Pacts
Ross Allen
Michelle Rose
Mariana Dionisio Blair Apple

Presentation Outline

- Background
- Overview of logistics
- Process options
- General process information
- Reaction kinetics
- Operating conditions optimization
- Diffusion model
- Equipment design
- Cost estimation
- Conclusions
- Mystery ópnuss naiterial

Background

- President Bush announces plan for lunar exploration on January 15th, 2004
- Stepping stone to future Mars exploration
- Previously proposed by Bush, Sr.
- 2003 Senate hearing: Iunar exploration for potential energy resources

Lunar Helium-3, Solar Power Satellites (SPS)

- President's Commission on Moon, Mars, and Beyond
- Commissioned to implement new exploration strategy
- Reportfindings in August 2004

Project Time Line

Biological Considerations

- Oxygen production requirements
- Average human consumes $305 \mathrm{~kg} \mathrm{O}_{2} /$ year
- Total oxygen production goals:
- $8.4 \mathrm{~kg} / \mathrm{day}$ or 20 moles $/ \mathrm{hr}$
- 6month back-up oxygen supply for emergency use
- Adequate for survival until rescue mission

Overview of Logistics

- Primary Concern
- Each launch costs $\$ 200$ million
- Maximum lift per launch: 220,200 lbs
- Minimize necessary launches
- Secondary Concerins
- Minimize process energy requirements
Operate within budget (non-profit project)
- NASA budget: $\$ 16$ billion/yr
- \$12 billion/yr dedicated to Iunar exploration

Process Options

- Process rankings
- Evaluated for very large scale O_{2} production
- 1000 tons per year

Process	Technology	No. of Steps	Process Conditions
Ilmenite Red. with H_{2}	8	9	7
Ilmenitre Red with CH_{4}	7	8	7
Glass reduction with H_{2}	7	9	7
Reduction with $\mathrm{H}_{2} \mathrm{~S}$	7	8	7
Kapor)Ryrolysis	6	8	6
Molten slicon \ectrolysis	6	8	5
HF adid.dissolution	5	1	2

H_{2} Reduction of Ilmenite Reaction

$\mathrm{FeOTHO}_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{THO}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

- Previous experimentation has shown:
- Iron oxide in ilmenite is completely reduced

Reaction temperature $<1000^{\circ} \mathrm{C}$

- At these conditions, $3.2-4.6 \% \mathrm{O}_{2}$ yields by mass
- 35 kg of lunnar soil per hour must be processed

Process Location

- Oxygen prc lunar soil
- Plant locati

South Pole also provides maximum amount of monthly sunlight at ~90\%

Block PFD

-Solids added to reactor; then H2 gas

Mining \& Solids Transportation
-After reaction, $\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}$ goes to condenser; spent solids removed
-From condenser, $\mathrm{H}_{2} \mathrm{O}$ liquid to electrolysis; H_{2} gas \square to storage
-From electrolysis, O_{2} is liquefied and
 stored; H_{2} gas to storage for recycle

Obtaining Raw Materials

- Automatic miner provides lunar soil to process
- Miner must provide 840 kg / day
- Annual area mined $4000 \mathrm{~m}^{2}$ (2.54 cm mining depth)
- Initial hydrogen charge delivered as liquid water

Optional Remote Navagation

Reduction of IImenite Reaction

$\mathrm{FeOTHO}_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{TiO}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

- Previous experimentation has shown:
- Rxn is $\mathbf{0 . 1 5}$ order in H_{2}
- $\Delta \mathrm{H}_{\mathrm{rxn}}=9.7 \mathrm{kcal} / \mathrm{g}-\mathrm{mol}$
- Particle radius is 0.012 cm (240 microns)
- Complete reduction of ilmenite in 20-25 min.
$\mathrm{T}=900^{\circ} \mathrm{C}, \mathrm{P}=150$ psia
At these conditions, $3.2-4.6 \% \mathrm{O}_{2}$ yields by mass Reaction neither diffusion controlled nor
reaction control: combination of both resistances accounted for in reaction model

Unreacted Shrinking Core Model -Diffusion Limited

$\left[\mathrm{H}_{2}\right]_{\mathrm{s}}$

Homogenous Model

-Reaction Limited

Intermediate Model -Reaction-Diffusion Control Combined

Reaction Model

$$
\frac{d \eta_{c}}{d t}+\left[1-6 \sigma_{s}^{2}\left(\eta_{c}^{2}-\eta_{c}\right) \frac{d \eta_{c}}{d t}\right]^{n}=0
$$

where:
B.C. $\eta_{c}=1 @ t=0$
$\sigma_{s}^{2}=$ reaction modulus
$=\mathrm{kc} \mathrm{C}^{\mathrm{n}-1} \mathrm{H}^{2}$ (particle radius)/[6(effective diffusivity)]
$\eta_{c} \quad=$ dimensionless radial coordinate of shrinking core
= core radius/particle radius
= dimensionless time
$=($ time $)\left(\mathrm{kCn}^{\mathrm{H}} \mathrm{H}\right)$)/[(solid molar density) (particle radius)]
= reaction order, found to be 0.15
$=$ constant H_{2} concentration, gm-mol/cm ${ }^{3}$
$\mathrm{KCn}_{2}=$ rate expression, 0.15 order in CH_{2}
= reaction rate, mole $\mathrm{H}_{2} / \mathrm{sec}-\mathrm{cm}^{2}, \mathrm{k}=$ rate constant
(Gibson et. al, 1994)

Solution Method

- DE numerically solved for rate change of shrinking core ($\left.d / n_{c} / d / t\right)$
- Reaction modulus, σ_{s}, used as parameter
- σ_{s} varied until project results compared respectably with prior experimental results
Reaction rate constant, k, then was determined from the value of σ_{s}
- RECADL:
$0_{0}=\left(\mathrm{kC}^{-1} \mathrm{H}^{2}(\text { particle radius })[6(\text { effective diffusivity })]\right]^{0.5}$

Result Comparison

Project Results

- Reaction modulus
$\sigma=3.52$
NOTE: $\sigma<10$ - Intermediate (reaction and diffusion control)
- Rate constant

$$
k=4,57 \times 10^{-4}, 4 y^{0.85 / m i n}
$$

- Reaction time of experimental model

22 min for a particle radius of 0.012 cm (ch $=24.0$ microns)

Shrinking Core

- Radius of particle 0.012 cm

150 PSIA

Water Production

- 78 moles produced in 22 minutes

Using the Model

- Reactor Design
- Pressure optimization
- Volume optimization
- Usable particle size

Operating Conditions Optimization

Effect of Particle Diameter

300 PSIA

Optimal Operating Conditions

- Pressure of reactor: 300 psi
- Volume of reactor: 1250 liters
- Number of batches per day: 12

Mean particle diameter: 240 um
80% of lunar soil less than $960 \mu \mathrm{~m}$

- Reaction complete in <1 5 minuites

Reactor Diffusion Model

- Must use fixed bed reactor
- Fluidized particles highly erosive
- Analyze diffusion to determine bed depth, reactor dimensions and possible effect on batch time
- Bed Depth

Thin if diffusion is slow
Thick if diffusion is fast
Reactor Dimensions
Volume fixed
Affects diameter and height

- Batch Vime
- May Reed to factor in time for diffiusion

Reactor Design Considerations

- Complicates reactor design
-Facilitatess diffusion

- Simpler reactor design
-Possible diffusion complications

Diffusion in Reactor

- Model using simplified continuity equation
- General Continuity Equation

$$
\frac{\partial C_{H 2}}{\partial t}+\nabla N_{H 2}-R_{H 2}=0
$$

For a one dimensional system

$$
\frac{\partial C_{H_{2}}}{\partial A}+D_{H_{2}, H_{2} O} \frac{\partial^{2} C_{H_{2}}}{\partial x^{2}}-R_{H_{2}}=0
$$

Conditions and Assumptions

- Assume $R_{H 2}$ is constant
- Initial Condition

$$
\text { - } C(x, 0)=C_{H 2,0}=0.21 \mathrm{M}
$$

- Boundary Conditions

Hydrogen Concentration vs. Bed Depth

Diffusion Conclusions

- Hydrogen diffuses very fast through the bed
- Water diffuses very fast through the hydrogen above the bed
- Diffusion is not a problem in the reactor

Reactor Design Considerations

- Fast diffusion facilitates design:
- Not necessary to agitate H_{2}
- Not necessary to have an even layer of ilmenite
- Can use hopper bottom to facilitate discharge of solids
Smoothing mechanism unnecessary
- Must feed and remove reactants and products in an order that will minimize H_{2} loss

Initial Reactor Design

-Smoothing blades and flat bed bottom create even layer of ilmenite
"Trap door" bottom opens to remove solids

Solids fed first to avoid opening valve 1 while H_{2} is in reactor
H_{2} vacuumed out before removing solids to prevent H_{2} loss

Hydrogen Inlet (257 mol/batch)

To Condenser

Diffusion fast enough to eliminate need for even layer of particles . No smoothing blade \rightarrow Hopperbottom

Reactant Preheat

- Reaction $\mathrm{T}=900^{\circ} \mathrm{C}$
- Ilmenite enters at $-30^{\circ} \mathrm{C}$
- H_{2} enters at $89^{\circ} \mathrm{C}$
- Heating Options:
- Heat inside reactor (heating coils)

Difficult to repair
Very slow heating due to low convection (stagnant H_{2}) Preheat H_{2}, heat Jmenite with H_{2}

Gomplex solid-gas heat exchanger (rotating parts) Foowing hot H_{2} over ilmenite in the reactor causes dust levitation

- Preneat fl with a line heater, preheat junenje in hopper by induction heating

Reactant Preheat

- 1 limenite heated from $-30^{\circ} \mathrm{C}$ to $955^{\circ} \mathrm{C}$ by induction heating
-Copper induction coils in hopper
-Coils isolated from hopper walls with non-conductive ceramic
- 15 minute heating time
$\cdot 50 \mathrm{~kW}$ heating source needed (assumes 50% efficiency)

-Line heater: $\mathrm{L}=3 \mathrm{~m}, \mathrm{D}=2^{\prime \prime}$
$\cdot \mathrm{H}_{2}$ inet gas heated from $89^{\circ} \mathrm{C}$ to $930^{\circ} \mathrm{C}$ in 5 minutes

-6. 5 kJ required

Block PFD

-After reaction, H2/H2O goes
 to condenser; spent solids removed

Condenser System

$\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}$ Reactor Effluent

Why use Ammonia?

- Why not use something on site (i.e. $\mathrm{H}_{2} \mathrm{O}$ or cold rock)?
- Advantageous properties of Ammonia:
- Very low freezing temperature ($-77^{\circ} \mathrm{C}$)
- Lowest fouling rate ($0.2286 \mathrm{~J} \mathrm{~m} \mathrm{K/s}$)

Most efficient of commonly used refrigerants
(G.O.P. is $\sim 3 \%$ better than $R-22 ; 10 \%$ better than $R-502)$

- High heat transfer characteristics (C_{p}, latent heat of vaporization, k)

Condensing System

- Aluminum
honeycomb radiator panels (ISS)
- Each panel $9 \mathrm{ft} \times 11 \mathrm{ft}$ and rejects 1.5 kW
- 2.3 kW must be rejected per batch
- Two panels used; one ammonia batch needs ~90 minutes

- Two panelshold nearly 5 batches of ammonia

Block PFD

> Mining \& Solids

Transportation
-From condenser, H2O liquid to
 electrolysis; H2 gas to storage

Electrolysis Chamber

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
from

Recycle H_{2} gas to storage -300 psia $-89^{\circ} \mathrm{C}$
-Overall reaction

-Runs continuously
-20 L volume
-3.5 kW power required
-2090 A current required

Overview: Process Timeline

TOTAL BATCH TIME: 90 minutes

Block PFD

Mining \& Solids
Transportation
-From electrolysis, O_{2} gas is
 liquefied and stored

Oxygen Storage

- Necessary Capabilities
- Collection of six month emergency supply
- Collection of occasional excess oxygen
- Restore emergency supply

Options

Compress and store as gas

- limplement liquefaction process

Liquefaction Process

Modified Claude Cycle

Floor Plan

Recreatic $80^{\circ} \mathrm{Cogex}$

Habitat Structure

Geodesic Dome

- Maximum volume for a given surface area
- Structurally sound
- Easily constructed

Necessary layers

Habitat Energy Requirements

- Energy Needs (max. energy consumption)
- 840 kW
- Energy will be input through electrical heating from solar panels
- Total solar panel area required

Cost Estimates

- Cost of project before delivery
- Construction material: \$32 million
- Solar Panels: \$8 million Process: $\$ 3.4$ million

Cost Estimates

- Cost of Shuttle Launches
- 23 shuttle launches necessary
- 13 Launches for habitat

5 Exploratory launches
3 Launches for astronauts
1 Launch for solar panels
1 Launch for process

- Toténcost of \$4. 6 billion

\square Launches
\square Solar Panels
\square Process
\square Construction Material

Conclusions

- Process
- Design for simplicity and safety
- Safety should be primary concern
- Simplicity reduces unknowns with lunar enviornment

Economics

Minimize shuttle launches to minimize cost

- Habitat will be majority of shuitlle launches

QUESTIONS?

Mystery Bonus Materia|

In Response To...

Email sent to Mr. Carlton Allen, head procurator of astro-materials at NASA's Johnson Space Center (shown at right at ilmenite testing facility?) inquiring about.our final reactor design

"Your design looks reasonable to me."

Carlton Allen
Head Procurator of Astro-Materials

In Response To...

- Email sent to kidsasknasa@nasa.gov:
"Hello NASA,
I have heard a lot about President Bush's new plan for permanent colonies on the moon. It seems like it would be really hard to produce enough oxygen to support a reasonable number of people. I know a lot of research has been done on ilmenite. Is this the most likely way that NASA plans to produce oxygen? It seems like a good idea, but could you all fill me in on the physical properties of ilmenite.

Thanks a lot, Stevie Mernandez
Ms. Jagajewicz $4^{\text {th }}$ Grade Class President

"Nasa is nowhere near making oxygen on the moon."

kidsasknasa@nasa.gov

Batch Number Optimization

Electrolysis Reactions (backup)

- $\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$
- H^{+}picks up an electron from the cathode:
- $\mathrm{H}^{+}+\mathrm{e}^{-} \mathrm{H}$
- $\mathrm{H}+\mathrm{H} \longrightarrow \mathrm{H}_{2}$
- Anode removes the e^{-}that the OH^{-}ion "stole" from the hydrogen initially
- OH^{-}combines with 3 others
- $4 \mathrm{OH}^{-} \longrightarrow \mathrm{O}_{2}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-}$
O_{2} molecule is very stable-bubbles to the surface
- A closed circuit is created in a way, involving e^{-}s in the wire, OH^{-}ions in the liquid
- Energy delivered by the battery is
 stored in the production of H_{2}

Back up - Calculations for Electrolysis

-Nernst Equation

$$
E=E^{\circ}-\frac{R T}{n \Im} \ln \left(\frac{a_{\mathrm{H}_{2}} a_{O_{2}}^{1 / 2}}{a_{\mathrm{H}_{2} \mathrm{O}}}\right)
$$

-Gibbs electrochemical energy

$$
\Delta G=-E n \Im
$$

-Work

$$
W=-\Delta G
$$

Equipment

- Compressor
- 217 hp
- Heat Exchangers
- E1 requires $100 \mathrm{ft}^{2}$
- E2 requires $120 \mathrm{ft}^{2}$
- All equipment will be vacuum jacketed and a multillayer insulation systems will be implemented

